Những câu hỏi liên quan
HA
Xem chi tiết
NT
16 tháng 12 2021 lúc 20:37

\(\Leftrightarrow\sqrt{x-4}\left(4-12\cdot\dfrac{1}{2}+2\cdot2\right)=6\)

=>x-4=9

hay x=13

Bình luận (0)
AS
Xem chi tiết
HT
1 tháng 10 2018 lúc 4:56

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}+\sqrt{\left(x+8\right)^2}=8\)

\(\Leftrightarrow x+1+x+2+x+3+x+8=8\)

\(\Leftrightarrow4x+14=8\)

\(\Leftrightarrow x=-\dfrac{6}{4}=-\dfrac{3}{2}\)

Bình luận (0)
NH
Xem chi tiết
NH
20 tháng 4 2018 lúc 20:33
https://i.imgur.com/dHruvWy.jpg
Bình luận (0)
HH
27 tháng 10 2018 lúc 22:08
https://i.imgur.com/AUAumRw.jpg
Bình luận (0)
HH
27 tháng 10 2018 lúc 22:09

có ai làm hộ bài mình gửi đc k

Bình luận (0)
YT
Xem chi tiết
LL
24 tháng 9 2021 lúc 0:23

1) \(ĐK:x\in R\)

2) \(ĐK:x< 0\)

3) \(ĐK:x\in\varnothing\)

4) \(=\sqrt{\left(x+1\right)^2+2}\) 

\(ĐK:x\in R\)

5) \(=\sqrt{-\left(a-4\right)^2}\)

\(ĐK:x\in\varnothing\)

 

Bình luận (0)
PK
Xem chi tiết
KN
26 tháng 2 2022 lúc 22:09

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

Bình luận (0)
VT
Xem chi tiết
NL
3 tháng 11 2020 lúc 20:32

a.

ĐKXĐ: \(8-2x\ge0\Rightarrow x\le4\)

b.

\(2-4x>0\Rightarrow x< \frac{1}{2}\)

c.

\(x^2-16x+64\ge0\Leftrightarrow\left(x-8\right)^2\ge0\) (luôn đúng)

Vậy hàm xác định trên R

Bình luận (0)
NT
Xem chi tiết
HD
24 tháng 11 2017 lúc 22:01

a) Đặt \(u=\sqrt{x^2+1}\left(u>0\right)\Rightarrow u^2-1=x^2\)

Phương trình trở thành :

\(2u^2+6x-\left(2x+6\right)t=0\)

\(\Rightarrow\Delta_t=\left(2x+6\right)^2-48x=\left(2x-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+6-2x+6}{4}=3\\t=\dfrac{2x+6+2x-6}{4}=x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=3\\\sqrt{x^2+1}=x\end{matrix}\right.\)

đến đây thì ez rồi

Bình luận (0)
HD
24 tháng 11 2017 lúc 22:05

c) Ta có :

\(2\sqrt{x^2-4x+5}=2\sqrt{\left(x-2\right)^2+1}\ge2\)

\(\sqrt{\dfrac{1}{4}x^2-x+1+4}=\sqrt{\left(\dfrac{1}{2}x-1\right)^2+4}\ge2\)

\(\Rightarrow2\sqrt{x^2-4x+5}+\sqrt{\dfrac{1}{4}x^2-x+5}\ge4\)

ta lại có: \(-4x^2+16x-12=-4\left(x^2-4x+4\right)+4\le4\)

\(\left\{{}\begin{matrix}VP\ge4\\VT\le4\end{matrix}\right.\)

Dấu bằng xảy ra khi x = 2

vậy x=2 là nghiệm của phương trình

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 9 2023 lúc 12:38

\(\sqrt[]{8x^2-16x+10}+\sqrt[]{2x^2-4x+10}=\sqrt[]{7-x^2+2x}\)

\(\Leftrightarrow\sqrt[]{8x^2-16x+10}=\dfrac{1}{4}\sqrt[]{2\left(7-x^2+2x\right)}-\sqrt[]{2x^2-4x+10}\)

\(\Leftrightarrow\sqrt[]{8x^2-16x+10}=\dfrac{1}{4}\sqrt[]{14-2x^2+4x}-\sqrt[]{2x^2-4x+10}\left(1\right)\)

Áp dụng BĐT Bunhiacopxki ta được:

\(\left[\dfrac{1}{4}\sqrt[]{14-2x^2+4x}+\left(-1\right).\sqrt[]{2x^2-4x+10}\right]^2\le\left(\dfrac{1}{16}+1\right)\left(14-2x^2+4x+2x^2-4x+10\right)=\dfrac{17}{16}.24=\dfrac{51}{2}\)

Dấu "=" xảy ra khi và chỉ khi

\(\sqrt[]{14-2x^2+4x}+4\sqrt[]{2x^2-4x+10}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}14-2x^2+4x=0\\2x^2-4x+10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}14+2-2\left(x^2-2x+1\right)=0\\2\left(x^2-2x+1\right)+10-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\left(x-1\right)^2+16=0\\2\left(x-1\right)^2+8=0\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)

\(pt\left(1\right)\Leftrightarrow8x^2-16x+10=\dfrac{51}{2}\)

\(\Leftrightarrow16x^2-32x+20-51=0\)

\(\Leftrightarrow16x^2-32x-31=0\left(2\right)\)

\(\Delta'=256+496=752>0\)

\(\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{47}\)

\(pt\left(2\right)\) có 2 nghiệm phân biệt

\(x=\dfrac{16\pm4\sqrt[]{47}}{16}=\dfrac{4\pm\sqrt[]{47}}{4}\)

Bình luận (0)
NT
6 tháng 9 2023 lúc 13:37

Cách giải trên đã sai, mình giải lại

\(\left(1\right)\Leftrightarrow\sqrt[]{8\left(x^2-2x+1\right)+2}+\sqrt[]{2\left(x^2-2x+1\right)+2}=\sqrt[]{8-\left(x^2-2x+1\right)}\)

\(\Leftrightarrow\sqrt[]{8\left(x-1\right)^2+2}+\sqrt[]{2\left(x-1\right)^2+2}=\sqrt[]{8-\left(x-1\right)^2}\left(2\right)\)

Vì \(\left(x-1\right)^2\ge0,\forall x\in R\)

\(\Rightarrow\left\{{}\begin{matrix}8\left(x-1\right)^2+2\ge2,\forall x\in R\\2\left(x-1\right)^2+2\ge2,\forall x\in R\\8-\left(x-1\right)^2\le8,\forall x\in R\end{matrix}\right.\)

Nên khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

Thay \(x=1\) vào \(\left(2\right)\) ta được

\(\sqrt[]{8.0+2}+\sqrt[]{2.0+2}=\sqrt[]{8-0}\)

\(\Leftrightarrow\sqrt[]{2}+\sqrt[]{2}=\sqrt[]{8}=2\sqrt[]{2}\left(đúng\right)\)

Vậy nghiệm của phương trình đã cho là \(x=1\)

Bình luận (0)
AQ
Xem chi tiết
AH
30 tháng 7 2021 lúc 16:55

a. 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$

$\Leftrightarrow \sqrt{2x}=3$

$\Leftrightarrow 2x=9$

$\Leftrightarrow x=\frac{9}{2}$ (tm)

b.

ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$

$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$

$\Leftrightarrow 3\sqrt{x+2}=15$

$\Leftrightarrow \sqrt{x+2}=5$

$\Leftrightarrow x+2=25$

$\Leftrightarrow x=23$ (tm)

 

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:57

c.

$\sqrt{(x-2)^2}=12$

$\Leftrightarrow |x-2|=12$

$\Leftrightarrow x-2=12$ hoặc $x-2=-12$

$\Leftrightarrow x=14$ hoặc $x=-10$

e.

PT $\Leftrightarrow |2x-1|-x=3$

Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$

$\Leftrightarrow x=4$ (tm)

Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

Bình luận (0)
AH
30 tháng 7 2021 lúc 17:00

f.

ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$

$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$

$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$

$\Leftrightarrow x=2$ hoặc $x=5$ (tm)

h. ĐKXĐ: $x\leq \frac{3}{2}$

PT $\Leftrightarrow \sqrt{3-2x}=x+2$

\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)

Vậy.......

Bình luận (0)