Những câu hỏi liên quan
CA
Xem chi tiết
MY
Xem chi tiết
NL
15 tháng 11 2018 lúc 17:52

\(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}-\overrightarrow{c}=2\left(3;2\right)+3\left(-4;7\right)-\left(5;0\right)=\left(2.3-3.4-5;2.2+3.7+0\right)=\left(-11;25\right)\)

\(\overrightarrow{a}=x.\overrightarrow{b}+y.\overrightarrow{c}\) \(\Rightarrow\left\{{}\begin{matrix}3=-4x+5y\\2=7x+0.y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-11}{28}\\y=\dfrac{2}{7}\end{matrix}\right.\)

Vậy \(\overrightarrow{a}=\dfrac{-11}{28}\overrightarrow{b}+\dfrac{2}{7}\overrightarrow{c}\)

Tương tự câu trên: \(\overrightarrow{c}=x.\overrightarrow{a}+y.\overrightarrow{b}\) \(\Rightarrow\left\{{}\begin{matrix}5=3x-4y\\0=2x+7y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{35}{29}\\y=\dfrac{-10}{29}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{c}=\dfrac{35}{29}\overrightarrow{a}-\dfrac{10}{29}\overrightarrow{b}\)

Quên còn biểu biễn b chưa làm, thôi bạn tự làm nốt, nó y hệt thôi, cứ việc bấm máy giải hệ 3s là xong

Bình luận (0)
KR
Xem chi tiết
PD
13 tháng 12 2020 lúc 8:09

Ta có: 

\(\overrightarrow{u}=\overrightarrow{i}+3\overrightarrow{j}=\overrightarrow{u}=\left(1;3\right)\\ \Rightarrow\overrightarrow{u}.\overrightarrow{v}=\left(1;3\right).\left(2;-1\right)=1.2+3.\left(-1\right)=-1\)

 

Bình luận (0)
NV
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
NL
26 tháng 12 2021 lúc 15:41

\(\overrightarrow{u}+2\overrightarrow{v}-3\overrightarrow{w}+\overrightarrow{x}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{x}=3\overrightarrow{w}-\overrightarrow{u}-2\overrightarrow{v}=3\left(-5;7\right)-\left(2;-5\right)-2\left(3;4\right)=\left(-23;18\right)\)

Bình luận (0)
UD
Xem chi tiết
NT
28 tháng 7 2022 lúc 13:31

Câu 1: 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
HV
Xem chi tiết