4.
a, \(p=\dfrac{a+b+c}{2}=\dfrac{9}{2}\)
Ta có \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\dfrac{3\sqrt{15}}{4}\)
Định lí cos: \(cosA=\dfrac{b^2+c^2-a^2}{2bc}=-\dfrac{1}{4}\)
\(S=\dfrac{abc}{4R}=\dfrac{3\sqrt{15}}{4}\Rightarrow R=\dfrac{abc}{3\sqrt{15}}=\dfrac{8\sqrt{15}}{15}\)
b, Ta có \(\dfrac{b^3+c^3-a^3}{b+c-a}=a^2\Leftrightarrow b^3+c^3-a^3=a^2b+a^2c-a^3\)
\(\Leftrightarrow\left(b+c\right)\left(b^2+c^2-bc-a^2\right)=0\)
\(\Leftrightarrow b^2+c^2-a^2=bc\left(1\right)\)
Khi đó: \(cotB+cotC=2cotA\)
\(\Leftrightarrow\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}=2\dfrac{cosA}{sinA}\)
\(\Leftrightarrow\dfrac{cosB}{\dfrac{b}{a}.sinA}+\dfrac{cosC}{\dfrac{c}{a}.sinA}=2\dfrac{cosA}{sinA}\)
\(\Leftrightarrow\dfrac{a.cosB}{b}+\dfrac{a.cosC}{c}=2cosA\)
\(\Leftrightarrow\dfrac{a^2+c^2-b^2}{2bc}+\dfrac{a^2+b^2-c^2}{2bc}=2.\dfrac{b^2+c^2-a^2}{2bc}\)
\(\Leftrightarrow\dfrac{2a^2}{2bc}=1\)
\(\Leftrightarrow a^2=bc\)
\(\left(1\right)\Leftrightarrow b^2+c^2-2bc=0\)
\(\Leftrightarrow\left(b-c\right)^2=0\)
\(\Leftrightarrow b=c\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\Delta ABC\) đều
cho tam giác ABC biết \(\dfrac{sinA}{sinB}=\sqrt{3}\) và BC=2.Tính AC
Theo định lí hàm số sin:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow\dfrac{sinA}{sinB}=\dfrac{a}{b}=\dfrac{2}{b}=\sqrt{3}\)
\(\Rightarrow AC=b=\dfrac{2}{\sqrt{3}}\)
Trong mặt phẳng Oxy,cho đường thẳng d:x-2y+1=0 và điểm M(2;-2).Toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d là
Phương trình đường vuông góc kẻ từ M đến d là \(2x+y-6=0\)
Hình chiếu của M trên d có tọa độ là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
Phương trình đường thẳng vuông góc kẻ từ M đến d là \(2x+y-2=0\)
Hình chiếu của M có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\)
Cho tam giác ABC có 3 góc nhọn và \(\widehat{ABC}>\widehat{ACB}\). Đường phân giác trong của góc BAC cắt đoạn BC tại D. Gọi E,F lần lượt là hình chiếu vuông góc của D trên AB và AC. K là giao điểm của CE và BF. Đường thẳng BF cắt đường tròn ngoại tiếp tam giác AEK tại điểm thứ hai là H ( H khác K). Gọi I là giao điểm của hai đường thẳng AK và BC. CM
a) \(IC.EB=IB.FC\)
b) \(DH\perp BF\)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Gọi M,N là điểm thỏa mãn \(\overrightarrow{MB}+2\overrightarrow{MA}=\overrightarrow{0},\overrightarrow{NC}+2\overrightarrow{NA}=\overrightarrow{0}\).Điểm E thuộc BN sao cho ME vuông góc với BC. Biết rắng góc NBC bằng 45 độ
a) Hay biểu thị \(\overrightarrow{CE}\) qua \(\overrightarrow{CA}\) và \(\overrightarrow{CB}\)
b) Cho E(3;-2) và phương trình đường thẳng CM: 2x+y-9=0. Tìm tọa độ điểm C
Cho tam giác ABC có BC = \(\sqrt{6}\) , AC = 2 và AB = \(\sqrt{3}+1\) và . Bán kính đường tròn ngoại tiếp tam giác ABC bằng:
Lời giải:
$p=\frac{AB+BC+AC}{2}=\frac{\sqrt{6}+\sqrt{3}+3}{2}$
Theo công thức Heron:
$S_{ABC}=\sqrt{p(p-AB)(p-BC)(p-AC)}=\frac{3+\sqrt{3}}{2}$
Bán kính đường tròn ngoại tiếp:
$R=\frac{AB.BC.AC}{4S}=\sqrt{2}$ (đvđd)
1/ Cho tam giác ABC có AB = 2, BC = 3 và ABC=60
Tính chu vi và diện tích của tam giác ABC
Áp dụng định lý hàm cos ta có \(CA^2=AB^2+BC^2-2AB.BC.cos\widehat{ABC}=2^2+3^2-2.2.3.cos\widehat{60o}=4+9-6=7\Rightarrow CA=\sqrt{7}\).
\(P_{ABC}=AB+BC+CA=2+3+\sqrt{7}=5+\sqrt{7}\). (đvđd)
\(S_{ABC}=\dfrac{1}{2}AB.BC.sin\widehat{ABC}=\dfrac{1}{2}.2.3.sin60^o=\dfrac{1}{2}.6.\dfrac{\sqrt{3}}{4}=\dfrac{3\sqrt{3}}{4}\). (đvdt)
1.
Gọi $L$ là giao $BM, CN$ thì $L$ là trọng tâm tam giác $ABC$.
Áp dụng công thức đường trung tuyến:
$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}$
$CN^2=\frac{a^2+b^2}{2}-\frac{c^2}{4}$$BL^2=\frac{4}{9}BM^2=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2$
$NL^2=\frac{1}{9}CN^2=\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$
Theo cong thức Pitago:
$BN^2=BL^2+NL^2$
$\Rightarrow \frac{c^2}{4}=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2+\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$
$\Rightarrow $5a^2=b^2+c^2$ hay $b^2+c^2=45$
Áp dụng công thức cos:
$a^2=b^2+c^2-2bc\cos A=b^2+c^2-\sqrt{3}bc$
$\Rightarrow 9=45-\sqrt{3}bc\Rightarrow bc=12\sqrt{3}$
$S_{ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}.12\sqrt{3}.\sin 30=3\sqrt{3}$
Đáp án A.
$b=
2.
\(R_{ABC}=\frac{abc}{4S_{ABC}}=\frac{3bc}{4S}=\frac{3.12\sqrt{3}}{4.3\sqrt{3}}=3\)
Đáp án B.
cho đường thẳng d:\(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)và điểm M (3;1)