Những câu hỏi liên quan
VG
Xem chi tiết
PT
12 tháng 11 2017 lúc 20:53

a)Để y là hàm số bậc nhất thì

\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)

Từ 2 điều trên suy ra m-2=0

                                  =>m=2

Vậy m=2

Bình luận (0)
NA
Xem chi tiết
NT
22 tháng 11 2023 lúc 7:50

loading...  loading...  loading...  

Bình luận (2)
NT
Xem chi tiết
DT
29 tháng 9 2016 lúc 10:43

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

Bình luận (0)
HM
Xem chi tiết
NL
17 tháng 7 2021 lúc 21:12

\(y'=\dfrac{2x^2-4mx-m^2+2m-1}{\left(x-m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta có:

\(\left\{{}\begin{matrix}2x^2-4mx-m^2+2m-1\ge0\left(1\right)\\m\le1\end{matrix}\right.\)

Xét (1): ta có \(\Delta'=4m^2-2\left(-m^2+2m-1\right)=6m^2-4m+2>0\) ; \(\forall m\)

\(\Rightarrow\) (1) thỏa mãn khi: \(x_1< x_2\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m^2+2m-1}{2}-2m+1\ge0\\2m< 2\end{matrix}\right.\) \(\Rightarrow-1-\sqrt{2}\le m\le-1+\sqrt{2}\)

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 11 2023 lúc 20:44

\(m^2-m+1=m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall m\)

=>\(y=\left(m^2-m+1\right)x-\sqrt{27}\) đồng biến trên R

Bình luận (0)
HV
Xem chi tiết
NH
28 tháng 4 2023 lúc 23:16

đồng biến khi m-1>0 

=>m>1

Bình luận (0)
NT
28 tháng 4 2023 lúc 23:16

Để hàm số đồng biến thì m-1>0

=>m>1

Bình luận (0)
CC
Xem chi tiết
TT
Xem chi tiết
NL
6 tháng 9 2021 lúc 17:29

\(y'=3x^2-6mx+6\left(m^2-2\right)=3\left(x^2-2mx+2m^2-4\right)\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>2\) ta có \(y'\ge0\)

\(\Delta'=m^2-\left(2m^2-4\right)=-m^2+4\)

TH1: \(\Delta'\le0\Leftrightarrow-m^2+4\le0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

 TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-m^2+4>0\\\left(x_1-2\right)\left(x_2-2\right)\le0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2< m< 2\\2m^2-4m\le0\\m< 2\end{matrix}\right.\) \(\Rightarrow0\le m< 2\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m\le-2\\m\ge0\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 11 2023 lúc 19:24

a: \(y=-x^3+\left(m+2\right)x^2-3x\)

=>\(y'=-3x^2+2\left(m+2\right)x-3\)

=>\(y'=-3x^2+\left(2m+4\right)\cdot x-3\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\left(2m+4\right)^2-4\cdot\left(-3\right)\left(-3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+16m+16-4\cdot9< =0\)

=>\(4m^2+16m-20< =0\)

=>\(m^2+4m-5< =0\)

=>\(\left(m+5\right)\left(m-1\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+5>=0\\m-1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-5\\m< =1\end{matrix}\right.\)

=>-5<=m<=1

TH2: \(\left\{{}\begin{matrix}m+5< =0\\m-1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=1\\m< =-5\end{matrix}\right.\)

=>\(m\in\varnothing\)

b: \(y=x^3-3x^2+\left(1-m\right)x\)

=>\(y'=3x^2-3\cdot2x+1-m\)

=>\(y'=3x^2-6x+1-m\)

Để hàm số đồng biến trên R thì \(y'>=0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3>0\\\left(-6\right)^2-4\cdot3\left(1-m\right)>=0\end{matrix}\right.\)

=>\(36-12\left(1-m\right)>=0\)

=>\(36-12+12m>=0\)

=>12m+24>=0

=>m+2>=0

=>m>=-2

Bình luận (0)
HM
Xem chi tiết
NL
17 tháng 7 2021 lúc 20:59

\(y'=3x^2-4mx-m-1\)

Hàm đồng biến trên (0;2) khi \(\forall x\in\left(0;2\right)\) ta có:

\(y'\ge0\Leftrightarrow3x^2-4mx-m-1\ge0\)

\(\Leftrightarrow3x^2-1\ge m\left(4x+1\right)\) (1)

Do \(4x+1>0\) ; \(\forall x\in\left(0;2\right)\) nên (1) tương đương:

\(m\le\dfrac{3x^2-1}{4x+1}\Leftrightarrow m\le\min\limits_{\left(0;2\right)}\dfrac{3x^2-1}{4x+1}\)

Xét hàm \(f\left(x\right)=\dfrac{3x^2-1}{4x+1}\) trên \(\left(0;2\right)\)

\(f'\left(x\right)=\dfrac{12x^2+6x+4}{\left(4x+1\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)>f\left(0\right)=-1\Rightarrow m\le-1\)

Bình luận (0)