Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

HM

tìm m để hàm số \(y=x^3-2mx^2-\left(m+1\right)x+1\) đồng biến trên (0;2) bằng cách cô lập m

NL
17 tháng 7 2021 lúc 20:59

\(y'=3x^2-4mx-m-1\)

Hàm đồng biến trên (0;2) khi \(\forall x\in\left(0;2\right)\) ta có:

\(y'\ge0\Leftrightarrow3x^2-4mx-m-1\ge0\)

\(\Leftrightarrow3x^2-1\ge m\left(4x+1\right)\) (1)

Do \(4x+1>0\) ; \(\forall x\in\left(0;2\right)\) nên (1) tương đương:

\(m\le\dfrac{3x^2-1}{4x+1}\Leftrightarrow m\le\min\limits_{\left(0;2\right)}\dfrac{3x^2-1}{4x+1}\)

Xét hàm \(f\left(x\right)=\dfrac{3x^2-1}{4x+1}\) trên \(\left(0;2\right)\)

\(f'\left(x\right)=\dfrac{12x^2+6x+4}{\left(4x+1\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)>f\left(0\right)=-1\Rightarrow m\le-1\)

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
BA
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HP
Xem chi tiết