Phân tích thành nhân tử a)196-a^2+2ab-b^2 b)a^2+6a-4b^2+9 c)4x-4+9y^2-x^2 d)5x^2-10x+5-45t^2 e)x^2-36y^2t^2-10x+25
Phân tích thành nhân tử a)196-a^2+2ab-b^2 b)a^2+6a-4b^2+9 c)4x-4+9y^2-x^2 d)5x^2-10x+5-45t^2 e)x^2-36y^2t^2-10x+25
`#040911`
`a)`
`196 - a^2 + 2ab - b^2`
`= 196 - (a^2 - 2ab + b^2)`
`= 196 - (a - b)^2`
`= 14^2 - (a - b)^2`
`= (14 - a + b)(14 + a - b)`
`b)`
`a^2 + 6a - 4b^2 + 9`
`= (a^2 + 6a + 9) - 4b^2`
`= [ (a)^2 + 2*a*3 + 3^2] - (2b)^2`
`= (a + 3)^2 - (2b)^2`
`= (a + 3 - 2b)(a + 3 + 2b)`
`c)`
`4x - 4 + 9y^2 - x^2`
`= 9y^2 - (x^2 - 4x + 4)`
`= (3y)^2 - [ (x)^2 - 2*x*2 + 2^2]`
`= (3y)^2 - (x - 2)^2`
`= (3y - x + 2)(3y + x - 2)`
`d)`
`5x^2 - 10x + 5 - 45t^2`
`= 5*(x^2 - 2x + 1 - 9t^2)`
`= 5*[ (x^2 - 2x + 1) - 9t^2]`
`= 5*{ [(x)^2 - 2*x*1 + 1^2] - (3t)^2}`
`= 5*[ (x - 1)^2 - (3t)^2]`
`= 5*(x - 1 - 3t)(x - 1 + 3t)`
`e)`
`x^2 - 36y^2t^2 - 10x +25`
`= (x^2 - 10x + 25) - 36y^2t^2`
`= [ (x)^2 - 2*x*5 + 5^2] - (6yt)^2`
`= (x - 5)^2 - (6yt)^2`
`= (x - 5 - 6yt)(x - 5 + 6yt)`
a: =196-(a^2-2ab+b^2)
=196-(a-b)^2
=(14-a+b)(14+a-b)
b: \(=\left(a^2+6a+9\right)-4b^2\)
\(=\left(a+3\right)^2-4b^2\)
\(=\left(a+3-2b\right)\left(a+3+2b\right)\)
c: \(=9y^2-\left(x^2-4x+4\right)\)
\(=\left(3y\right)^2-\left(x-2\right)^2\)
\(=\left(3y-x+2\right)\left(3y+x-2\right)\)
d: \(=5\left(x^2-2x+1-9t^2\right)\)
\(=5\left[\left(x-1\right)^2-\left(3t\right)^2\right]\)
\(=5\left(x-1-3t\right)\cdot\left(x-1+3t\right)\)
e: \(=x^2-10x+25-36y^2t^2\)
\(=\left(x-5\right)^2-\left(6yt\right)^2\)
\(=\left(x-5-6yt\right)\left(x-5+6yt\right)\)
Phân tích đa thức thành nhân tử
3x2(a-b+c)+36xy(a-b+c)+108y2(a-b+c)
x2-2xy+y2-4m2+4mn-n2
\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)
\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)
\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)
\(=3\left(a-b+c\right)\left(x+6y\right)^2\)
___________________
\(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)
Tìm giá trị nhỏ nhất của biểu thức
M=2x2+4x+7
N=x2-x+1
Tìm giá trị lớn nhất của biểu thức
E=-4x2+x-1
F=5x-3x2+6
Tìm giá trị nhỏ nhất của biểu thức:
a) Ta có:
\(M=2x^2+4x+7\)
\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)
\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)
\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)
\(M=2\left(x+1\right)^2+5\)
Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:
\(M=2\left(x+1\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra:
\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy: \(M_{min}=5\) khi \(x=-1\)
b) Ta có:
\(N=x^2-x+1\)
\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=" xảy ra:
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
Tìm giá trị lớn nhất của biểu thức
a) Ta có:
\(E=-4x^2+x-1\)
\(E=-\left(4x^2-x+1\right)\)
\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)
\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)
Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên
\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)
Dấu "=" xảy ra:
\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)
\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)
Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)
b) Ta có:
\(F=5x-3x^2+6\)
\(F=-3x^2+5x-6\)
\(F=-\left(3x^2-5x-6\right)\)
\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)
\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)
\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)
Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:
\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)
Dấu "=" xảy ra:
\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)
Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)
\(M=2x^2+4x+7\)
\(=2\left(x^2+2x+\dfrac{7}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{5}{2}\right)\)
\(=2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]\)
\(=2\left(x+1\right)^2+5\)
Vì \(2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+1\right)^2+5\ge5\forall x\)
\(\Rightarrow M_{min}=5\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Tương tự: \(N=x^2-x+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
\(\Rightarrow N_{min}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
\(E=-4x^2+x-1\)
\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)
\(=-4\left[x^2-2.x.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2-\left(\dfrac{1}{8}\right)^2+\dfrac{1}{4}\right]\)
\(=-4\left[\left(x-\dfrac{1}{8}\right)^2+\dfrac{15}{64}\right]\)
\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{15}{16}\)
Vì \(-4\left(x-\dfrac{1}{8}\right)^2\le0\forall x\)
\(\Rightarrow-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{15}{16}\le-\dfrac{15}{16}\forall x\)
\(\Rightarrow E_{max}=-\dfrac{15}{16}\Leftrightarrow-4\left(x-\dfrac{1}{8}\right)^2=0\Leftrightarrow x=\dfrac{1}{8}\)
Tương tự: \(F=5x-3x^2+6\)
\(=-3x^2+5x+6\)
\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)
\(\Rightarrow F_{max}=\dfrac{97}{12}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{5}{6}\)
Phân tích đa thức sau thành nhân tử
27x3-54x2y+36xy2-8y3
x3-1+5x2-5+3x-3
a5+a4+a3+a2+a+1
\(a,27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
\(b,x^3-1+5x^2-5+3x-3\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left[x^2+x+1+5\left(x+1\right)+3\right]\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
\(c,a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
______________________
\(x^3-1+5x^2-5+3x-3\)
\(=\left(x^3-1\right)+\left(5x^2-5\right)+\left(3x-3\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
________________
\(a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)
tìm x
x6 +2x3+1=0
x(x-5)=4x-20
x4-2x2=8-4x2
(x3-x2)-4x2+8x-4=0
\(x^6+2x^3+1=0\)
\(\Leftrightarrow\left(x^3\right)^2+2x^3+1=0\)
\(\Leftrightarrow\left(x^3+1\right)^2=0\)
\(\Leftrightarrow x^3=\left(-1\right)^3\)
\(\Leftrightarrow x=-1\)
___________
\(x\left(x-5\right)=4x-20\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
_____________
\(x^4-2x^2=8-4x^2\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(4x^2-8\right)=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
_______________
\(\left(x^3-x^2\right)-4x^2+8x-4\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
x3+2x2y+xy2-9x
\(x^3+2x^2y+xy^2-9x\)
\(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left[\left(x^2+2xy+y^2\right)-9\right]\)
\(=x\left[\left(x+y\right)^2-9\right]\)
\(=x\left(x+y+3\right)\left(x+y-3\right)\)
Bài 2 : Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC theo thứ tự tại E và F. Chứng minh: 𝐴𝐸/𝐴𝐷 + 𝐶𝐹/𝐵𝐶 = 1
Phân tích đa thức thành nhân tử x^3-3x^2y+3xy^2-y^3-z^z^3
x^2-y^2+8x+6y+7
x³ - 3x²y + 3xy² - y³ - z³
= (x³ - 3x²y + 3xy² - y³) - z³
= (x - y)³ - z³
= (x - y - z)[(x - y)² + (x - y)z + z²]
= (x - y - z)(x² - 2xy + y² + xz - yz + z³)
--------------------
x² - y² + 8x + 6y + 7
= (x² + 8x + 16) - (y² - 6y + 9)
= (x + 4)² - (y - 3)²
= (x + 4 - y + 3)(x + 4 + y - 3)
= (x - y + 7)(x + y + 1)
a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)
\(=\left(x-y\right)^3-z^3\)
\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)
\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)
b: \(=x^2+8x+16-y^2+6y-9\)
=(x+4)^2-(y-3)^2
=(x+4+y-3)(x+4-y+3)
=(x+y+1)(x-y+7)
Phân tích đa thức thành nhân tử rồi tính giá trị biểu thức
A=3x^2-2(x-y)^2-3y^2 tại x=4,y=-4
B=4(x-2)(x+1)+(2x-4)^2+(x+1)^2 tại x=-1/2
C=x^2(y-z)+y^2(z-x)+z^2(x+y) tại x=6,y=5,z=4
D=x^2017-10x^2016+10x^2015-...-10x^2+10x-10 với x=9
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
b: \(B=\left(2x-4\right)^2+2\cdot\left(2x-4\right)\left(x+1\right)+\left(x+1\right)^2\)
=(2x-4+x+1)^2
=(3x-3)^2
Khi x=-1/2 thì B=(-3/2-3)^2=(-9/2)^2=81/4
c: \(C=x^2\left(5-4\right)+y^2\left(4-6\right)+z^2\left(6+4\right)\)
=x^2-2y^2+10z^2
=6^2-2*5^2+10*4^2
=146
d: x=9 thì x+1=10
\(D=x^{2017}-x^{2016}\left(x+1\right)+x^{2015}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)\)
=x^2017-x^2017+x^2016+...-x^3-x^2+x^2+x-x-1
=-1
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
Phân tích đa thức thành nhân tử
M=(a+b+c)^3-a^3-b^3-c^3
N=a^3+b^3+c^3-3abc
M = (a + b + c)3 - a3 - b3 - c3
= (a + b)3 + c3 + 3(a + b)2c + 3(a + b)c2 - a3 - b3 - c3
= a3 + b3 + c3 + 3a2b + 3ab2 + 3(a + b)c(a + b + c) - a3 - b3 - c3
= 3ab (a + b) + 3c(a + b)(a + b + c)
= 3(a + b)[ab + c(a + b + c)]
= 3(a + b)(ab + bc + ac + c2)
= 3(a + b)[b(a + c) + c(a + c)]
= 3(a + b)(b + c)(c + a)
N = a3 + b3 + c3 - 3abc
= (a + b)3 + c3 - 3ab(a + b) - 3abc
= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)
= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]
= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ca - 2ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
P=24(7^2+1)(7^4+1)(7^8+1)(7^16+1)
P=24(7^2+1)(7^4+1)(7^8+1)(7^16+1)
=> 2P = 48(7^2+1)(7^4+1)(7^8+1)(7^16+1)
= (7^2 - 1)(7^2+1)(7^4+1)(7^8+1)(7^16+1)
= (7^4 - 1)(7^4+1)(7^8+1)(7^16+1)
= (7^8 - 1)(7^8+1)(7^16+1)
= (7^16 - 1)(7^16+1)
= 7^32 - 1
=> P = (7^32 - 1) / 2