Phân tích đa thức thành nhân tử
1) y2 - 4y + 4 - x2
2) 8x3 -12x2 + 6x - 2
Phân tích đa thức thành nhân tử
1) y2 - 4y + 4 - x2
2) 8x3 -12x2 + 6x - 2
1)
\(y^2-4y+4-x^2\\ =\left(y-2\right)^2-x^2\\ =\left(y-2-x\right)\left(y-2+x\right)\)
2)
\(8x^3-12x^2+6x-2\\ =2\left(4x^3-6x^2+3x-1\right)\\ =2\left(4x^3-4x^2-2x^2+2x+x-1\right)\\ =2\left(4x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\right)\\ =2\left(x-1\right)\left(4x^2-2x+1\right)\)
1) \(y^2-4y+4-x^2\)
\(=\left(y^2-4y+4\right)-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-2-x\right)\left(y-2+x\right)\)
2) \(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
\(=\left(2x-1\right)\left(2x-1\right)\left(2x-1\right)\)
1: =(x+y)^2-25
=(x+y)^2-5^2
=(x+y+5)(x+y-5)
2: =10^2-(3x-y)^2
=(10-3x+y)(10+3x-y)
3: =(8x)^2-(8a+b)^2
=(8x-8a-b)(8x+8a+b)
4: =(2ab^2)^2-(c^2d)^2
=(2ab^2-c^2d)(2ab^2+c^2d)
5: =(2x)^3-(ab)^3
=(2x-ab)(4x^2+2axb+a^2b^2)
6: =2(8x^3+27y^3)
=2(2x+3y)(4x^2-6xy+9y^2)
7: =(2x)^3-y^3
=(2x-y)(4x^2+2xy+y^2)
8: =(a+b-2a+b)(a+b+2a-b)
=(-a+2b)*3a
9: =(a+b-a+b)[(a+b)^2+(a+b)(a-b)+(a-b)^2]
=2b*[a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2]
=2b(3a^2+b^2)
10: =(a+b+a-b)[(a+b)^2-(a+b)(a-b)+(a-b)^2]
=2a*[a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2]
=2a(3b^2+a^2)
Bài 15 : chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của x
a. A = 6 ( x + 2 ) ( x2 - 2x + 4 ) - 6x3 - 2
b. B = 2 ( 3x + 1 ) ( 9x2 - 3x + 1 ) - 54x3
a.
\(A=6\left(x^3+2^3\right)-6x^3-2\\ =6x^3+48-6x^3-2\\ =46\)
Vậy biểu thức trên không phụ thuộc vào giá trị x.
b.
\(B=2\left(\left(3x\right)^3+1\right)-54x^3\\ =2\left(27x^3+1\right)-54x^3\\ =54x^3+2-54x^3\\ =2\)
Vậy biểu thức trên không phụ thuộc vào giá trị x.
a) \(A=6\left(x+2\right)\left(x^2-2x+4\right)-6x^3-2\)
\(A=6\left(x^3+8\right)-6x^3-2\)
\(A=6x^3+48-6x^3-2\)
\(A=46\)
Vậy: ....
b) \(B=2\left(3x+1\right)\left(9x^2-3x+1\right)-54x^3\)
\(B=2\left(27x^3+1\right)-54x^3\)
\(B=54x^3+2-54x^3\)
\(B=2\)
Vậy: ...
Bài 13 : tính nhanh
a. 5012
b . 882 + 24 . 88 + 122
c. 52 . 48
Bài 14 : rút gọn biểu thức
a. P = ( 2x - 1 ) ( 4x2 + 2x + 1 ) + ( x + 1 ) ( x2 - x + 1 )
b. Q = ( x - y ) ( x2 + xy + y2 ) - ( x + y ) ( x2 - xy + y2 ) + 2y3
Bài 13:
a) \(501^2\)
\(=\left(500+1\right)^2\)
\(=500^2+2\cdot500\cdot1+1^2\)
\(=250000+1000+1\)
\(=251001\)
b) \(88^2+24\cdot88+12^2\)
\(=88^2+2\cdot12\cdot88+12^2\)
\(=\left(88+12\right)^2\)
\(=100^2\)
\(=10000\)
c) \(52\cdot48\)
\(=\left(50+2\right)\left(50-2\right)\)
\(=50^2-2^2\)
\(=2500-4\)
\(=2496\)
Bài 14:
a) \(P=\left(2x-1\right)\left(4x^2+2x+1\right)+\left(x+1\right)\left(x^2-x+1\right)\)
\(P=\left(2x\right)^3-1+x^3+1\)
\(P=8x^3+x^3\)
\(P=9x^3\)
b) \(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+2y^3\)
\(Q=x^3-y^3-x^3-y^3+2y^3\)
\(Q=-2y^3+2y^3\)
\(Q=0\)
Bài `14`
`a. P = ( 2x - 1 ) ( 4x^2 + 2x + 1 ) + ( x + 1 ) ( x^2 -x+1)`
`=(2x)^3-1^3 + x^3+1^3`
`=8x^3-1+x^3+1`
`= 9x^3`
__
`b, Q = ( x - y ) ( x^2 + xy + y^2 ) - ( x + y ) ( x^2 - xy + y^2)+2y^3`
`=x^3-y^3 -(x^3+y^3)+2y^3`
`=x^3-y^3 -x^3-y^3+2y^3`
`= 0`
Bài 11 : rút gọn các biểu thức
a. ( 7x + 4 )2 - ( 7x + 4 ) ( 7x - 4 )
b. ( x + 2y)2 - 6xy ( x + 2y )
Bài 12 : Tính
a. (1/2x + 4)2
b. ( 7x - 5y )2
c. ( 6x2 + y2 ) ( y2 - 6x2 )
d . ( x + 2y )2
e. ( x - 3y ) ( x + 3y )
f. ( 5 - x )2
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
\(11,\)
\(a,\left(7x+4\right)^2-\left(7x+4\right)\left(7x-4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=\left(7x+4\right).8=56x+32\)
\(b,\left(x+2y\right)^2-6xy\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-6xy\right)\)
Bài `12`
`(1/2x+4)^2`
`=(1/2x)^2 + 2 . 1/2x.4 + 4^2`
`= 1/4 x^2 +4x + 16`
__
`(7x-5y)^2`
`=(7x)^2-2.7x.5y+(5y)^2`
`= 49x^2 - 70xy + 25y^2`
__
`(6x^2+y^2)(y^2-6x^2)`
`=(y^2+6x^2)(y^2-6x^2)`
`=(y^2)^2 - (6x^2)^2`
`=y^4-36x^4`
__
`(x+2y)^2`
`=x^2+ 2.x.2y+(2y)^2`
`= x^2 + 4xy +4y^2`
__
`(x-3y)(x+3y)`
`=x^2 - (3y)^2`
`=x^2 - 9y^2`
__
`(5-x)^2`
`=5^2 -2.5.x+x^2`
`=25 - 10x+x^2`
Bài `11`
`(7x+4)^2 -(7x+4)(7x-4)`
`= (7x+4)(7x+4) -(7x+4)(7x-4)`
`=(7x+4)(7x+4-7x+4)`
`=8(7x+4)`
`= 56x+32`
__
`(x+2y)^2-6xy (x+2y)`
`= (x+2y) (x+2y-6xy)`
Bài 10 : Rút gọn các biểu thức
a. A = ( x + 2 ) ( x2 - 2x + 4 ) - x3 + 2
b . B = ( x - 1 ) ( x2 + x + 1 ) - ( x + 1 ) ( x2 - x + 1 )
c. C = ( 2x - y ) ( 4x2 + 2xy + y2 ) + ( y - 3x ) ( y2 + 3xy + 9x2 )
a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)
\(A=x^3+8-x^3+2\)
\(A=10\)
b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(B=x^3-1-\left(x^3+1\right)\)
\(B=x^3-1-x^3-1\)
\(B=-2\)
c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)
\(C=8x^3-y^3+y^3-27x^3\)
\(C=-19x^3\)
a)
\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)
b)
\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)
c)
\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)
bài 9 : rút gọn các biểu thức
a. A = ( 2x + y )2 - ( 2x - y ) 2
b. B = ( x - 2y )2 - 4(x - 2y )y + 4y2
a) A = [(2x + y) - (2x - y)] . [(2x +y) + (2x - y)]
b) B = [(x - 2y) - 2y]2
\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\\ =\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\\ =2y\cdot4x\\ =8xy\\ b,B=\left(x-2y\right)^2-4y\left(x-2y\right)+4y^2\\ =x^2-4xy+4y^2-4xy+8y^2+4y^2\\ =x^2+16y^2-8xy\\ =\left(x-4y\right)^2\)
\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\)
\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)
\(=2y.4x=8xy\)
Vậy \(A=8xy\)
\(----------\)
\(b,B=\left(x-2y\right)^2-4\left(x-2y\right)y+4y^2\)
\(=\left(x-2y\right)^2-2.\left(x-2y\right).2y+\left(2y\right)^2\)
\(=\left(x-2y-2y\right)^2\)
\(=\left(x-4y\right)^2\)
Vậy \(B=\left(x-4y\right)^2\)
Bài 8 : Chứng minh các đẳng thức sau
a. ( a2 - 1 )2 + 4a2 = ( a2 + 1 )2
b. ( x - y ) + ( x + y ) 2 + 2(x2 - y2 ) = 4x2
\(a,VT=\left(a^2-1\right)^2+4a^2\\ =a^4-2a^2+1+4a^2\\ =a^4+2a^2+1\\ =\left(a^2+1\right)^2 =VP\\ b,VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\\ =x^2-2xy+y^2+x^2+y^2+2xy+2x^2-2y^2\\ =4x^2=VP\)
Bài 7 : hoàn thiện các hằng đẳng thức sau
a. .... - 10x + 25x = ( x - .... )2
b. .... - 4x2 + x4 = ( .... - x2 )2
c. x2 - .... + 9y2 = ( x - ....)2
d. ( 2x + ....) ( .... - y2 ) = 4x2 - y4
a. \(x^2-10x+25=\left(x-5\right)^2\)
b.\(4-4x^2+x^4=\left(2-x^2\right)^2\)
c. \(x^2-6y+9y^2=\left(x-3y\right)^2\)
d. \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)
a) x2 - 10x + 25x = ( x - 5)2
b) 4 - 4x2 + x4 = ( 2 - x2 )2
c) x2 - 6xy + 9y2 = (x - 3y )2
d_ (2x + y2 ). (2x - y2 ) = 4x2 - y4
Bài 6 : viết các biểu thức dưới dạng bình phương của một tổng hoặc hiệu
a. x2 + 4x + 4
b. 4x2 - 4x + 1
c . x2 - x + 1/4
d . 4(x+y)2 - 4(x+y) + 1
a) \(x^2+4x+4\)
\(=x^2+2\cdot2\cdot x+2^2\)
\(=\left(x+2\right)^2\)
b) \(4x^2-4x+1\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2\)
\(=\left(2x-1\right)^2\)
c) \(x^2-x+\dfrac{1}{4}\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
d) \(4\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=\left[2\left(x+y\right)\right]^2-2\cdot2\left(x+y\right)\cdot1+1^2\)
\(=\left[2\left(x+y\right)-1\right]^2\)
\(=\left(2x+2y-1\right)^2\)