x^2+y^3+3xy(x+y) Phân tích thành nhân tử
x^2+y^3+3xy(x+y) Phân tích thành nhân tử
Lời giải:
$x^3+y^3+3xy(x+y)=x^3+3x^2y+3xy^2+y^3=(x+y)^3$
P.s: Lần sau bạn chú ý ghi đầy đủ yêu cầu đề nhé.
a: \(16-x^2=4^2-x^2=\left(4-x\right)\left(4+x\right)\)
b: \(x^2-8x+16\)
\(=x^2-2\cdot x\cdot4+4^2\)
\(=\left(x-4\right)^2\)
c: \(x^2-2x+1-y^2\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
d: \(x^2+2xy+y^2-1\)
\(=\left(x^2+2xy+y^2\right)-1\)
\(=\left(x+y\right)^2-1\)
\(=\left(x+y+1\right)\left(x+y-1\right)\)
a: \(x^3-4x=x\cdot x^2-x\cdot4\)
\(=x\left(x^2-4\right)\)
\(=x\left(x-2\right)\left(x+2\right)\)
b: \(xy-3x\)
\(=x\cdot y-x\cdot3\)
=x(y-3)
c: \(x^2+4xy+4y^2-25\)
\(=\left(x^2+4xy+4y^2\right)-25\)
\(=\left(x+2y\right)^2-5^2\)
\(=\left(x+2y+5\right)\left(x+2y-5\right)\)
d: \(x^2+25-10x\)
\(=x^2-2\cdot x\cdot5+5^2\)
\(=\left(x-5\right)^2\)
e: \(x^3-8y^3\)
\(=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
a: \(a^3-3a+3b-b^3\)
\(=\left(a^3-b^3\right)-\left(3a-3b\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2-3\right)\)
b: \(a^2+6ab+9b^2-1\)
\(=\left(a^2+6ab+9b^2\right)-1\)
\(=\left(a+3b\right)^2-1\)
\(=\left(a+3b-1\right)\left(a+3b+1\right)\)
c: \(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)
\(=\left(4x^2-25\right)-\left(2x+7\right)\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\cdot\left(2x-5\right)\)
d: \(x^2+2x-15\)
\(=x^2+5x-3x-15\)
\(=\left(x^2+5x\right)-\left(3x+15\right)\)
\(=x\left(x+5\right)-3\left(x+5\right)\)
\(=\left(x+5\right)\left(x-3\right)\)
e: \(2x^3+3x^2-5x\)
\(=x\left(2x^2+3x-5\right)\)
\(=x\left(2x^2+5x-2x-5\right)\)
\(=x\left[x\left(2x+5\right)-\left(2x+5\right)\right]\)
\(=x\left(2x+5\right)\left(x-1\right)\)
f: \(2x^3-4x^2+2x-4\)
\(=2\left(x^3-2x^2+x-2\right)\)
\(=2\left[x^2\left(x-2\right)+\left(x-2\right)\right]\)
\(=2\left(x-2\right)\left(x^2+1\right)\)
g: \(x^3-4x^2-8x+8\)
\(=\left(x^3+8\right)-\left(4x^2+8x\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)-4x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+4-4x\right)\)
\(=\left(x+2\right)\left(x^2-6x+4\right)\)
h: \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=\left(x^2-2xy\right)-\left(5xy-10y^2\right)\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-5y\right)\)
Câu 14: (2,0 điểm) Phân tích đa thức sau thành nhân tử a) c) x2 + 25 – 10xd ) x3 – 8y3 Câu 15: (1,0 điểm) Tìm x, biết a) 3x.(x-1) + x-1=0 b) x2 - 6x = 0 Câu 16: (2,0 điểm) Cho tam giác vuông ABC vuông ở A có đường cao AH. Gọi E ,F lần lượt là hình chiếu của H lên AB và AC. a. So sánh AH và EF b. Tính độ dài HF biết AB = 6 cm, BC = 10 cm và BH = 3,6 cm. Câu 17: (1,0 điểm) Cho hình thang ABCD (AB// CD) có O là giao điểm 2 đường chéo. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại E và H. Chứng minh OE= OH.
Câu 17:
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Câu 15:
a: \(3x\left(x-1\right)+x-1=0\)
=>\(3x\left(x-1\right)+\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b: \(x^2-6x=0\)
=>\(x\cdot x-x\cdot6=0\)
=>x(x-6)=0
=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Chi tiết nhất
a: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x\right)^2+5\left(x^2+x\right)-2\left(x^2+x\right)-10\)
\(=\left(x^2+x\right)\left(x^2+x+5\right)-2\left(x^2+x+5\right)\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)
\(=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
b: \(\left(x^2+2x\right)^2+9x^2+18x+20\)
\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)\)
\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
c: \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x\right)^2+24\left(x^2+10x\right)+16\left(x^2+10x\right)+384+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)
\(=\left(x^2+10x+20\right)^2\)
Chi tiết nhâtz
Bài 3:
a: \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)
=>\(y^3-6y^2+12y-8-\left(y^3-27\right)+6\left(y^2+2y+1\right)=49\)
=>\(y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)
=>\(24y+25=49\)
=>24y=24
=>y=1
Bài 2:
a: \(\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=2x^2+2y^2=2\left(x^2+y^2\right)\)
b: \(m^3+n^3+p^3-3mnp\)
\(=\left(m+n\right)^3-3mn\left(m+n\right)+p^3-3mnp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mpn\)
\(=\left(m+n+p\right)\left[\left(m+n\right)^2-p\left(m+n\right)+p^2\right]-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2-3mn\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-mp-np\right)\)
Bài 2
a) \(VT=\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)\)
\(=VP\)
Vậy \(\left(x+y\right)^2+\left(x-y^2\right)=2\left(x^2+y^2\right)\)
b) \(VP=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
\(=m^3+mn^2+mp^2-m^2n-mnp-m^2p+m^2n+n^3+np^2-mn^2-n^2p-mnp+m^2p+n^2p+p^3-mnp-np^2-mp^2\)
\(=m^3+n^3+p^3+\left(mn^2-mn^2\right)+\left(mp^2-mp^2\right)+\left(-m^2n+m^2n\right)+\left(-mnp-mnp-mnp\right)+\left(n^2p-n^2p\right)+\left(np^2-np^2\right)+\left(m^2p-m^2p\right)\)
\(=m^3+n^3+p^3-3mnp\)
\(=VP\)
Vậy \(m^3+n^3+p^3-3mnp=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
Bài 3
a) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)
\(y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)
\(\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+25=49\)
\(24y=49-25\)
\(24y=24\)
\(y=\dfrac{24}{24}\)
\(y=1\)
Cho (a+b+c)^3=a^3+b^3+c^3 tính giá trị T =(a+b)(b+c)^2(c+a)^2
\(\left(a+b+c\right)^3=a^3+b^3+c^3\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=a^3+b^3+c^3\)
=>\(3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(T=\left(a+b\right)\cdot\left(b+c\right)^2\cdot\left(c+a\right)^2\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\cdot\left(b+c\right)\left(a+c\right)\)
\(=0\cdot\left(b+c\right)\left(a+c\right)\)
=0
Chi tiết nhất ạ e cảm ơn
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt: \(x^2+x+1=y\), khi đó biểu thức trở thành:
\(y\left(y+1\right)-12\)
\(=y^2+y-12\)
\(=y^2-3y+4y-12\)
\(=y\left(y-3\right)+4\left(y-3\right)\)
\(=\left(y-3\right)\left(y+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x^2-x+2x-2\right)\left(x^2+x+5\right)\)
\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
b) \(\left(x^2+2x\right)^2+9x^2+18x+20\)
\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
Đặt: \(x^2+2x=a\), khi đó biểu thức trở thành:
\(a^2+9a+20\)
\(=a^2+4a+5a+20\)
\(=a\left(a+4\right)+5\left(a+4\right)\)
\(=\left(a+4\right)\left(a+5\right)\)
\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
Đặt: \(x^2+10x+20=y\), khi đó biểu thức trở thành:
\(\left(y-4\right)\left(y+4\right)+16\)
\(=y^2-16+16\)
\(=y^2\)
\(=\left(x^2+10x+20\right)^2\)
$\text{#}Toru$
Tìm x biết (x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0
$(x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0$
$\Leftrightarrow(x^2-2)^2-4(x^2-2)(x-1)+4(x-1)^2=0$
$\Leftrightarrow(x^2-2)^2-2\cdot(x^2-2)\cdot2(x-1)+[2(x-1)]^2=0$
$\Leftrightarrow[(x^2-2)-2(x-1)]^2=0$
$\Leftrightarrow(x^2-2-2x+2)^2=0$
$\Leftrightarrow(x^2-2x)^2=0$
$\Leftrightarrow x^2-2x=0$
$\Leftrightarrow x(x-2)=0$
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: $x\in\{0;2\}$.