Mn ơi cho mik hỏi câu này đc ko ạ ?
( - x2y3)( 2xn-2yn - 3xnyn-3 + xn-2 yn-3 )
Biết n thuộc N , n lớn hơn hoặc bằng 3
Mik cảm ơn !
Mn ơi cho mik hỏi câu này đc ko ạ ?
( - x2y3)( 2xn-2yn - 3xnyn-3 + xn-2 yn-3 )
Biết n thuộc N , n lớn hơn hoặc bằng 3
Mik cảm ơn !
\(=-x^2y^3\cdot2x^{n-2}y^n+x^2y^3\cdot3x^ny^{n-3}-x^2y^3\cdot x^{n-2}y^{n-3}\)
\(=-2x^ny^{n+3}+3x^{n+2}y^n-x^ny^n\)
a, -2/3(x²y²)² + 1/3xy² . 0,75x - 3xy . ( -2x )
\(-\dfrac{2}{3}\left(x^2y^2\right)^2+\dfrac{1}{3}xy^2\cdot0,75x-3xy\cdot\left(-2x\right)\)
\(=-\dfrac{2}{3}x^4y^4+\dfrac{1}{3}xy^2\cdot\dfrac{3}{4}x-3xy\cdot\left(-2x\right)\)
\(=-\dfrac{2}{3}x^4y^4+\left(\dfrac{1}{3}\cdot\dfrac{3}{4}\right)\left(x\cdot x\right)y^2-\left(3\cdot-2\right)\left(x\cdot x\right)y\)
\(=-\dfrac{2}{3}x^4y^4+\dfrac{1}{4}x^2y^2+6x^2y\)
4:
1: \(=x^3-x^2-x^3-2x^2-x-2=-3x^2-x-2\)
2: \(=x^2-xy^2-x^2y-x^2+y^2+y\)
=-xy^2-x^2y+y^2+y
3: \(=x^3+26x-5x^2-130+5-25x-x+5x^2\)
=x^3-125
4: \(=x^3+xy-x^2y-y^2-x^3-xy^2+x^2+y^2\)
=-x^2y-xy^2+x^2+xy
5: \(=6x^2-7x+2-15x^2-13x-2\)
=-9x^2-20x
6: \(=6x^2+23x-55-6x^2-23x-21\)
=-76
7: \(=2x^2-5x-12+x^2-7x+10=3x^2-12x-2\)
8: \(=48x^2-32x+5+3x-48x^2-7+112x\)
=83x-2
12(y-3)=17
\(\Leftrightarrow12y-36=17\\ \Leftrightarrow12y=17+36=53\\ \Rightarrow y=\dfrac{53}{12}\)
12(y-3)=17
\(\Leftrightarrow\) 12y - 36 = 17
\(\Leftrightarrow\) 12y = 17 + 36
\(\Leftrightarrow\) 12y = 53
\(\Leftrightarrow\) y = \(\dfrac{53}{12}\)
\(12(y-3)=17\)
\(\Leftrightarrow12y=17+36\)
\(\Leftrightarrow12y=53\)
\(\Leftrightarrow y=53:12\)
\(\Leftrightarrow y=\dfrac{53}{12}\)
Tính giá trị : a) p= x^3y-14y^3-6xy^2+y+2 tại x=-1 ;y=0,5 b) q= 15x^2y-5xy^2+7xy-21 tại x=0,2 y= -1,2
\(a,\)Thay \(x=-1;y=0,5\) vào \(p=x^3y-14y^3-6xy^2+y+2\)
\(\Rightarrow p=\left(-1\right)^3.0,5-14.0,5^3-6.\left(-1\right).0,5^2+0,5+2\)
\(=-0,5-1,75+1,5+0,5+2\)
\(=1,75\)
\(b,\)Thay \(x=0,2;y=-1,2\) vào \(q=15x^2y-5xy^2+7xy-21\)
\(\Rightarrow p=15.0,2^2.\left(-1,2\right)-5.0,2.\left(-1,2\right)^2+7.0,2.\left(-1,2\right)-21\)
\(=-0,72-1,44-1,68-21\)
\(=-24,84\)
2x-3=0
2x - 3 = 0
\(\Leftrightarrow\) 2x = 3
\(\Leftrightarrow\) x = \(\dfrac{3}{2}\)
S = \(\left\{\dfrac{3}{2}\right\}\)
\(2x-3=0\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ S=\left\{\dfrac{3}{2}\right\}\)
D= 3x + 2 + | x + 5 |
TH1: x>=-5
=>D=3x+2+x+5=4x+7
TH2: x<-5
D=3x+2-x-5=2x-3
\(\dfrac{1}{2x-x^2-4}\) tìm GTLN/ GTNN
\(\dfrac{3x^2+14}{x^2+4}\)
\(\dfrac{2x+1}{x^2+2}\)
\(a,\\ \dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\\ \Leftrightarrow\dfrac{x-23}{24}+\dfrac{x-23}{25}-\dfrac{x-23}{26}-\dfrac{x-23}{27}=0\\ \Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)
mà `1/24+1/25-1/26-1/27 \ne 0`
nên `x-23=0`
`x=23`
\(c,\\ \dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\\ \Leftrightarrow\left(\dfrac{x+1}{2004}+1\right)+\left(\dfrac{x+2}{2003}+1\right)=\left(\dfrac{x+3}{2002}+1\right)+\left(\dfrac{x+4}{2001}+1\right)\\ \Leftrightarrow\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\\ \Leftrightarrow\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}-\dfrac{x+2005}{2002}-\dfrac{x+2005}{2001}=0\\ \Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\\ \Leftrightarrow x+2005=0\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\ne0\right)\\ \Rightarrow x=-2005\)
\(e,\\ \dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\\ \Leftrightarrow\left(\dfrac{x-45}{55}-1\right)+\left(\dfrac{x-47}{53}-1\right)-\left(\dfrac{x-55}{45}-1\right)-\left(\dfrac{x-53}{47}-1\right)=0\\ \Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\\ \Leftrightarrow\left(x-100\right)\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\right)=0\\ \Leftrightarrow x-100=0\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\ne0\right)\\ \Rightarrow x=100\)
\(\dfrac{4x}{x^2-25}+\dfrac{3}{x+5}-\dfrac{2}{x-5}=\dfrac{4x}{\left(x+5\right)\left(x-5\right)}+\dfrac{3}{x+5}-\dfrac{2}{x-5}\)
\(=\dfrac{4x+3x-15-2x-10}{\left(x+5\right)\left(x-5\right)}=\dfrac{5x-25}{\left(x+5\right)\left(x-5\right)}=\dfrac{5}{x+5}\)
1: \(=\dfrac{4x+3x-15-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{5x-25}{\left(x-5\right)\left(x+5\right)}=\dfrac{5}{x+5}\)
2: |A|=A
=>A>=0
=>5/x+5>=0
=>x+5>0
=>x>-5