Những câu hỏi liên quan
MH
Xem chi tiết
H24
20 tháng 3 2020 lúc 11:08

a) \(\left\{{}\begin{matrix}5x-y=2\\x+5y=1\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}5x-y=2\\5x+25y=5\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}26y=3\\5x-y=2\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}y=\frac{3}{26}\\x=\frac{11}{26}\end{matrix}\right.\)

vậy...

b)\(\left\{{}\begin{matrix}x+y=-1\\kx-y=2\\x+ky=1\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}y=-1-x\\kx-y=2\\x+ky=1\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}kx-\left(-1-x\right)=2\\x+k\left(-1-x\right)=1\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}x\left(k+1\right)=1\\x\left(1-k\right)=1+k\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}x=\frac{1}{k+1}\\x=\frac{1+k}{1-k}\end{matrix}\right.\) dk x\(\ne\)-1 ; x\(\ne\)1

->\(\frac{1}{k+1}=\frac{1+k}{1-k}\)

->\(1-k=k^2+2k+1\)

->k2+3k=0

->\(\left[{}\begin{matrix}k=-3\\k=0\end{matrix}\right.\)(nhận)

vậy ....

Bình luận (0)
 Khách vãng lai đã xóa
NL
20 tháng 3 2020 lúc 11:18

a, Thay k = 5 vào hệ phương trình ta được :

\(\left\{{}\begin{matrix}5x-y=2\\x+5y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}25x-5y=10\\x+5y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x-y=2\\26x=11\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{55}{26}-y=2\\x=\frac{11}{26}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{3}{26}\\x=\frac{11}{26}\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm \(\left(x;y\right)=\left(\frac{11}{26};\frac{3}{26}\right)\) với giá trị của k = 5 .

b, Ta có : \(\left\{{}\begin{matrix}kx-y=2\\x+ky=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=kx-2\\x+k\left(kx-2\right)=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=kx-2\\x+k^2x-2k=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=kx-2\\x\left(k^2+1\right)=1+2k\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{k\left(1+2k\right)}{k^2+1}-2\\x=\frac{1+2k}{k^2+1}\end{matrix}\right.\)

- Để \(x+y=-1\) thì :

\(\frac{1+2k}{k^2+1}+\frac{k\left(1+2k\right)}{k^2+1}-2=-1\)

=> \(\frac{k\left(1+2k\right)+1+2k}{k^2+1}=1\)

=> \(k\left(1+2k\right)+1+2k=k^2+1\)

=> \(k+2k^2+1+2k-k^2-1=0\)

=> \(k^2+3k=0\)

=> \(\left[{}\begin{matrix}k=0\\k=-3\end{matrix}\right.\)

Vậy để thỏa mãn điều kiền trên thì k có giá trị là 0 hay -3 .

Bình luận (0)
 Khách vãng lai đã xóa
AA
Xem chi tiết
DT
Xem chi tiết
BB
Xem chi tiết
MH
24 tháng 5 2022 lúc 10:55

\(\left\{{}\begin{matrix}2x+ky=1\\kx+2y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{k}{2}y+\dfrac{1}{2}\\k\left(-\dfrac{k}{2}y+\dfrac{1}{2}\right)+2y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{k}{2}y+\dfrac{1}{2}\\\left(-\dfrac{k^2}{2}+2\right)y+\left(\dfrac{k}{2}-1\right)=0\end{matrix}\right.\)

Hệ PT có nghiệm \(\Leftrightarrow\left(-\dfrac{k^2}{2}+2\right)y+\left(\dfrac{k}{2}-1\right)=0\) có nghiệm

\(\Leftrightarrow-\dfrac{k^2}{2}+2\ne0\Leftrightarrow\dfrac{k^2}{2}=2\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)

Bình luận (0)
NO
Xem chi tiết
NL
5 tháng 3 2020 lúc 13:58

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

Bình luận (0)
 Khách vãng lai đã xóa
NL
5 tháng 3 2020 lúc 14:01

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NS
Xem chi tiết
HL
2 tháng 1 2022 lúc 8:05

D sai 

Bình luận (0)
VD
Xem chi tiết
XL
Xem chi tiết
AH
2 tháng 3 2021 lúc 22:50

Lời giải:

a)

Khi $m=1$ thì HPT trở thành:\(\left\{\begin{matrix} x-y=2\\ x+y=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2x=2+1\\ 2y=1-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{3}{2}\\ y=\frac{-1}{2}\end{matrix}\right.\)

b) 

HPT \(\Leftrightarrow \left\{\begin{matrix} mx-y=2\\ x=1-my\end{matrix}\right.\Rightarrow m(1-my)-y=2\)

\(\Leftrightarrow y(m^2+1)=m-2\Rightarrow y=\frac{m-2}{m^2+1}\)

\(x=1-my=1-\frac{m^2-2m}{m^2+1}=\frac{1+2m}{m^2+1}\)

Để $x+y=-1$

$\Leftrightarrow \frac{m-2}{m^2+1}+\frac{1+2m}{m^2+1}=-1$

$\Leftrightarrow \frac{3m-1}{m^2+1}=-1$

$\Rightarrow 3m-1=-m^2-1$

$\Leftrightarrow m^2+3m=0\Rightarrow m=0$ hoặc $m=-3$

 

 

Bình luận (0)
NL
Xem chi tiết
NL
18 tháng 2 2021 lúc 10:02

giúp mình vớiii

Bình luận (0)