Tìm GTNN: x+ (2căn x) +3/(cănx) + 9 (x>0)
M=(1/căn x +3 +cănx+9/x-9).cănx/2 với x>hoặc=0,x khác 9. tìm x thuộc Z để M có giá trị là số tự nhiên lớn nhất
\(M=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2}{\sqrt{x}-3}\)
Để M là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}2⋮\sqrt{x}-3\\\sqrt{x}-3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3\in\left\{2;1;-1;-2\right\}\\x>9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{25;16;4;1\right\}\\x>9\end{matrix}\right.\Rightarrow x\in\left\{25;16\right\}\)
Thế vào M,ta đường \(\left\{{}\begin{matrix}x=25\Rightarrow M=1\\x=16\Rightarrow M=2\end{matrix}\right.\)
\(\Rightarrow M\) có giá trị là số tự nhiên lớn nhất là \(2\) khi \(x=16\)
Cho hai biểu thức P=2 cănx / căn x +3 cộng căn x / căn x-3 trừ 3x+3/ x-9 và Q= căn x +1/ căn x -3 (với x>_ 0; x#9)
1. Rút gọn P và tính M=P/Q
2. Cho biểu thức A=x.M+ 4x+7/cănx+3. Tìm GTNN của A
(2-căn x-1phần 2căn x-3):(6căn x+1phần 2x -căn x -3+cănx phần căn x +1)a, rút gon btb, tính gt của bt khi x=4b,so sánh với 3phần2
giả sử x,y>0 x,y thuộc R thỏa (cănx+1).(căny+1)>=4
tìm GTNN của P=x^2/y + y^2/x
cho A=cănx/căn(x+3)+2cănx/căn(x-3)-3x+9/x-9,với x lớn hơn bằng 0,x khác 9
a rút gọn biểu thức A
b tìm x để a=1/3
c tìm giá trị lớn nhất của A
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.
`a)A=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx-3)-(3x+9)/(x-9)(x>=0,x ne 9)`
`=(sqrtx(sqrtx-3)+2sqrtx(sqrtx+3)-3x-9)/(x-9)`
`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`
`=(3sqrtx-9)/(x-9)`
`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`
`=3/(sqrtx+3)`
`b)A=1/3`
`<=>3/(sqrtx+3)=1/3`
`<=>sqrtx+3=9`
`<=>sqrtx=6`
`<=>x=36(tm)`
`c)A=3/(sqrtx+3)`
`sqrtx+3>=3>0`
`=>A<=3/3=1`
Dấu "=" xảy ra khi `x=0`
Cho hàm số: y= f(x) = -2x+5 (1)
a)Vẽ đô thị hàm số (1) trên mặt phẳng tọa độ
b)Tìm tọa độ giao điểm I của hai hàm số y= -2x+5 và y= x-1 bằng phương pháp tính
A= 2căn (x-1) +căn (10-4x) . tìm GTLN ,GTNN
\(A=2\sqrt{x-1}+\sqrt{10-4x}\)
\(=\sqrt{4x-4}+\sqrt{10-4x}\)
Áp dung BĐT Bun-hia-cop-xki:
\(|\sqrt{4x-4}+\sqrt{10-4x}|\le\sqrt{1+1}.\sqrt{4x-4+10-4x}=2\sqrt{3}\)
\(\Rightarrow-2\sqrt{3}\le A\le2\sqrt{3}\)
Dấu '=' xảy ra khi \(x=\frac{7}{4}\)
Cho biểu thức P =(1/(x-cănx)+cănx/(x-1)):(xcănx-1)/(xcănx-cănx) (với x>0 và x1)
a)Rút gọn P.
b) Tìm x để P=1/2
a) \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\right)\)
\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(P=\left(\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(P=\dfrac{1}{\sqrt{x}-1}\)
b) P = \(\dfrac{1}{2}\) khi:
\(\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\)
\(\Rightarrow2=\sqrt{x}-1\)
\(\Rightarrow\sqrt{x}=3\)
\(\Rightarrow x=9\left(tm\right)\)
a: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
b: P=1/2
=>căn x-1=2
=>căn x=3
=>x=9
a) Để rút gọn biểu thức P, ta thực hiện các bước sau: P = [(1/(x-√x)) + (√x/(x-1))] : [(x√x-1)/(x√x-√x)] Đầu tiên, ta nhân tử và mẫu của phân số bên trái với (x-√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [(1/(x-√x)) * (x-√x) + (√x/(x-1)) * (x-√x)] : [(x√x-1)/(x√x-√x)] P = [1 + (√x * (x-√x))/(x-1)] : [(x√x-1)/(x√x-√x)] Tiếp theo, ta nhân tử và mẫu của phân số bên phải với (x√x+√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [1 + (√x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x+√x)] : [(x√x-1)/(x√x-√x)] P = [(x√x+√x + √x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x + x - x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^3 + 3x√x + 2x)] / [(x-1) * (x√x-1)] P = (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) Vậy biểu thức P sau khi rút gọn là (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1). b) Để tìm x để P = 1/2, ta giải phương trình: (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) = 1/2 Nhân cả hai vế của phương trình với (x^2√x - x√x - x + 1) để loại bỏ mẫu phân số: 2(x^3 + 3x√x + 2x) = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x - x^2√x + x√x + x - 1 = 0 2x^3 + 5x√x + 5x - x^2√x - 1 = 0 Đây là phương trình không thể giải bằng phép tính đơn giản. Ta có thể sử dụng phương pháp số học hoặc phương pháp đồ thị để tìm nghiệm của phương trình này.
cho A = cănx/cănx - 1 + 2/x - cănx và B = 1/cănx - 1 (x>0; x#1)
a) tính B khi x = 9
b) C = A:B rút gọn C
c) x? C=3
d) so sánh C với 1/4
e) cm C>2
f) x thuộc Z để C thuộc Z
g) min C
h) m? có x thoả mãn cănx . C > cănx + m - 3