a) căn(x²+12)+5=3x+căn(x²+5)
b) 9(căn(4x+1)-căn(3x-2))=x+3
c) căn(2x+4)-2 căn(2x-1)=6x-4/căn(x²+4)
d) x²+9x+20=2 căn(3x+10)
A) Căn 16x - 2 căn 20x +3 căn 25x =28 B) căn 4x-12 - căn 25x-75+ căn 16x-48 C) 2 căn x-2 + 4 căn 9-3+ 6 căn x-5 = x+y+z+4 D) căn x-1 + 2 căn y-4 + 3 căn z-9=1/2(x+y+z)
Câu 1: Cho hai số thực a,b thỏa mãn điều kiện ab=1,a+b khác 0. Tính giá trị biểu thức:
P=1/(a+b)^3(1/a^3+1/b^3)+3/(a+b)^4(1/a^2+1/b^2)+6/(a+b)^5(1/a+1/b)
Câu 2:
a) Giải phương trình:2x^2+x+3=3x căn(x+3)
b) Chứng minh rằng abc(a^3-b^3)(b^3-c^3)(c^3-a^3) chia hết cho 7 với mọi số nguyên a,b,c.
Câu 3: Cho hai số dương a,b thỏa mãn điều kiện a+b<=1. Chứng minh rằng:a^2-3/(4a)-a/b<=-9/4
Câu 4: Cho phương trình x^2-2(m-2)x+m^2-3m+3=0(m là tham số). Tìm m để phương trình có hai nghiệm x_1 và x_2 sao cho 3x_1.x_2-x_1^2-x_2^2-5=0
Câu 5: Giải hệ phương trình:
x+y=-6, căn((y+2)/(2x-1))+căn((2x-1)/(y+2))=2
Câu 6: Tìm nghiệm nguyên của phương trình:
3x^2-2y^2-5xy+x-2y-7=0
Câu 7: Cho x,y là các số thực dương thay đổi thỏa mãn điều kiện x+y<=1. Tìm min của P=(x^2+1/4y^2)(y^2+1/4x^2)
Câu 8: Giải phương trình và hệ phương trình:
a) (x^2-9)căn(2-x)=x(x^2-9)
b) (x^2+4y^2)^2-4(x^2+4y^2)=5,3x^2+2y^2=5
Câu 9: Cho phương trình (x-2m)(x+m-3)/(x-1)=0.Tìm m để x_1^2+x_2^2-5x_1.x_2=14m^2-30m+4
Câu 10: Chứng minh rằng với mọi số nguyên n>=1 ta luôn có:1/ căn(n+1)-căn(n)>=2 căn n
@Akai Haruma
Baì1. Phân tích
a, 15x+ 10 căn x
b, a+căn bc + căn ac+ căn ab
Bài 2. Tìm GTNN, GTLN
a, A=x-4 căn x +9
b, x-3 căn x - 9
\(\frac{ }{ }\)
Tìm giá trị của x để biểu thức
Q=-5 căn x +2 phần căn x +3 < hoặc = 2/3
căn x+3 -2can2x+2=căn2x-1 - cănx+8
Câu 1:Giải phương trình:
(3-x)căn((3+x)(9+x^2))=4 căn(5(3-x))
Câu 2:Tính x/y biết x>1,y<0 và (x+y)(x^3-y^3)căn((1-căn(4x-1))^2)/(1-căn(4x-1))(x^2y^2+xy^3+y^4)
Bai 2. Tìm GTNN, GTLN
a, A= 5/ x - 2 căn x +9
b, B= 4/ x- căn x +3
c, C= x-3 căn x - 9