rút gọn phân thức
\(\dfrac{27-x^3}{x^2-9}\)
rút gọn phân thức
\(\dfrac{x-3}{x}-\dfrac{x}{x-3}-\dfrac{9}{x\left(x-3\right)}\)
\(=\dfrac{x^2-6x+9-x^2-9}{x\left(x-3\right)}=\dfrac{-6x}{x\left(x-3\right)}=\dfrac{6}{3-x}\)
1. Rút gọn phân thức \(\dfrac{\left(x+y\right)^2}{x^2-y^2}=\) ta được kết quả là:
2. Rút gọn phân thức \(\dfrac{x^2-3x}{x^2-9}=\)
giúp mình với nhé mình đang cần gấp ạ
1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)
cho biểu thức
P=(\(\dfrac{\text{x^3+3x}}{\text{x^3+3x^2+9x+27}}\)+\(\dfrac{\text{3}}{\text{x^2+9}}\)):(\(\dfrac{\text{1}}{\text{x-3}}\)-\(\dfrac{\text{6x}}{\text{x^3-3x^2+9x-27}}\))
rút gọn p
với x>0 thì P không nhận gt nào
Tìm cácgt của x để P nguyên
ĐKXĐ: \(x\ne\pm3\)
\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Ý 2 mình k hiểu ý bạn lắm
\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
2)
a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:
\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)
BÀI 6
\(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
a) viết điều kiện xác định của biểu thức A
b)rút gọn phân thức
c)tìm giá trị của Akhi x=-1
BÀI 7
\(A=\dfrac{x+2}{x-2}+\dfrac{x-1}{x+2}\dfrac{x^2-4x}{4-x^2}\)với x2-4≠0
a)rút gọn biểu thức A
b)tính giá trị cua A khi x=4
a) ĐKXĐ:
\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)
c) Thay x = - 1 vào A ta có:
\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)
rút gọn biểu thức M=\(\dfrac{x+3}{x-9}\)+\(\dfrac{2}{\sqrt{x}+3}\)-\(\dfrac{1}{\sqrt{x}-3}\) với x≥0,x≠9
\(M=\dfrac{x+3+2\left(\sqrt{x}-3\right)-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{x+3+2\sqrt{x}-6-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{x+\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
Ta có: \(M=\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x+3+2\left(\sqrt{x}-3\right)-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}+2\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(^{\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}}\)
a,rút gọn phân thức
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
\(\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
\(=\dfrac{x^2-4-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x-4}{x-2}\)
Làm chi tiết theo yêu cầu của bạn :
\(ĐKXĐ\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
\(\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
\(=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x-4}{x-2}\)
p/s : bonus nếu bạn không hiểu ptich đa thức thành nhân tử =))
x2 + x - 6 = x2 + 3x - 2x - 6 = x(x+3) - 2(x+3) = (x-2)(x+3)
x2 - x - 12 = x2 + 3x - 4x - 12 = x(x+3) - 4(x+3) = (x-4)(x+3)
RÚT GỌN BIỂU THỨC:
16) \(A = \dfrac{\sqrt{x}}{\sqrt{x} + 3} + \dfrac{2\sqrt{x}}{\sqrt{x} - 3} - \dfrac{3x + 9}{x - 9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) (ĐK: \(x\ge0;x\ne9\))
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{\left(\sqrt{x}\right)^2-3^2}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3}{\sqrt{x}+3}\)
Rút gọn phân thức
A=\(\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x\left(x-3\right)}\right):\dfrac{2x-2}{x}\)
\(=\left(\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}-\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9}{x\left(x-3\right)}\right)\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ =\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6}{x}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-3}{x-1}\)
cho phân thức\(\dfrac{x^2+6x+9}{x^2-9}\)
a,tìm điều kiện xác định của x để phân thức xác định
b,rút gọn phân thức
c,tính giá trị của A tại x=2