Những câu hỏi liên quan
TL
Xem chi tiết
NT
25 tháng 2 2022 lúc 20:46

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Bình luận (0)
KH
Xem chi tiết
TH
16 tháng 5 2022 lúc 21:59

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)

\(\Leftrightarrow-2x+2mx-m-2=0\)

\(\Leftrightarrow2x\left(m-1\right)=m+2\)

\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)

Để phương trình có nghiệm là 1 số không âm thì:

\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)

\(\Leftrightarrow m>1\) hay \(m\le-2\).

-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.

Bình luận (0)
P2
Xem chi tiết
NT
5 tháng 2 2022 lúc 22:19

a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)

Để phương trình có hai nghiệm thì -4m+24>=0

=>-4m>=-24

hay m<=6

Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow-2\left(m-5\right)=8\)

=>m-5=-4

hay m=1(nhận)

Bình luận (0)
LR
Xem chi tiết
H24
Xem chi tiết
NL
5 tháng 3 2022 lúc 0:52

Đặt \(f\left(x\right)=\left(m^2+m+4\right)x^{2017}-2x+1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=1>0\)

\(m^2+m+4=\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

\(\Rightarrow\lim\limits_{x\rightarrow-\infty}\left[\left(m^2+m+4\right)x^{2017}-2x+1\right]=\lim\limits_{x\rightarrow-\infty}x^{2017}\left[\left(m^2+m+4\right)-\dfrac{2}{x^{2016}}+\dfrac{1}{x^{2017}}\right]=-\infty< 0\)

\(\Rightarrow\) Luôn tồn tại 1 số âm \(a< 0\) sao cho \(f\left(a\right)< 0\)

\(\Rightarrow f\left(a\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(a;0\right)\)

Hay pt đã cho luôn có ít nhất 1 nghiệm âm với mọi m

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 4 2023 lúc 18:37

Δ=(-2m)^2-4(m^2-m)

=4m^2-4m^2+4m=4m

Để (1) có 2 nghiệm phân biệt thì 4m>0

=>m>0

x1^2+x2^2=4-3x1x2

=>(x1+x2)^2-2x1x2=4-3x1x2

=>(2m)^2+m^2-m=4

=>4m^2+m^2-m-4=0

=>5m^2-m-4=0

=>5m^2-5m+4m-4=0

=>(m-1)(5m+4)=0

=>m=1 hoặc m=-4/5(loại)

Bình luận (0)
CG
Xem chi tiết
NL
18 tháng 4 2021 lúc 23:57

Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết

Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.

Bình luận (0)
ND
Xem chi tiết
H24
9 tháng 3 2023 lúc 17:28

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

Bình luận (1)
DT
Xem chi tiết
H24
4 tháng 2 2022 lúc 11:18

\(a,m=1\Rightarrow x^2+x-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\\ b,\Delta=\left(2m-1\right)^2+4m=\left(2m\right)^2-4m+1+4m\\ =4m^2+1>0\forall m\)  

--> Phương trình luôn có 2 nghiệm phân biệt

--> Không có giá trị m để pt vô nghiệm

Bình luận (0)
NT
4 tháng 2 2022 lúc 11:20

a, Thay m = 1 vào pt trên ta được 

\(x^2+x-1=0\)

\(\Delta=1-4\left(-1\right)=1+5>0\)

Vậy pt luôn có 2 nghiệm pb 

\(x_1=\dfrac{-1-\sqrt{6}}{2};x_2=\dfrac{-1+\sqrt{6}}{2}\)

b, Ta có : \(\Delta=\left(2m-1\right)^2-4\left(-m\right)=4m^2+1< 0\)( vô lí )

Do \(4m^2\ge0\forall m\Rightarrow4m^2+1>0\forall m\)

hay ko có gtri nào của m để pt vô nghiệm 

Bình luận (0)
KB
Xem chi tiết
NL
24 tháng 3 2021 lúc 18:25

Với \(m=2\Rightarrow6x^2+3=0\) (vô nghiệm)

Với \(m\ne2\) đặt \(x^2=t\ge0\Rightarrow\left(m-2\right)t^2-2\left(m+1\right)t-3=0\) (1)

Ứng với mỗi \(t>0\Rightarrow\) luôn có 2 giá trị x phân biệt tương ứng thỏa mãn

\(\Rightarrow\) Pt đã cho có đúng 2 nghiệm pb khi và chỉ khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow-3\left(m-2\right)< 0\Leftrightarrow m>2\)

Bình luận (0)