Chương 4: GIỚI HẠN

H24

chứng minh rằng phương trình (m2+m+4)x2017 -2x+1=0 luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m 

NL
5 tháng 3 2022 lúc 0:52

Đặt \(f\left(x\right)=\left(m^2+m+4\right)x^{2017}-2x+1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=1>0\)

\(m^2+m+4=\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

\(\Rightarrow\lim\limits_{x\rightarrow-\infty}\left[\left(m^2+m+4\right)x^{2017}-2x+1\right]=\lim\limits_{x\rightarrow-\infty}x^{2017}\left[\left(m^2+m+4\right)-\dfrac{2}{x^{2016}}+\dfrac{1}{x^{2017}}\right]=-\infty< 0\)

\(\Rightarrow\) Luôn tồn tại 1 số âm \(a< 0\) sao cho \(f\left(a\right)< 0\)

\(\Rightarrow f\left(a\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(a;0\right)\)

Hay pt đã cho luôn có ít nhất 1 nghiệm âm với mọi m

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LA
Xem chi tiết
LS
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
LA
Xem chi tiết
MA
Xem chi tiết
PQ
Xem chi tiết
LA
Xem chi tiết