Những câu hỏi liên quan
PP
Xem chi tiết
HH
6 tháng 2 2021 lúc 16:17

Thử nhé

Vì P là bất đẳng thức đối xứng nên dự đoán điểm rơi \(x=y=z=\dfrac{\sqrt{2021}}{3}\)

Thay vo P ta duoc \(P=4.\sqrt{2021}\)

----------------------------------------------------------

\(P=\sum\dfrac{\left(x+y\right)\sqrt{\left(y+z\right)\left(z+x\right)}}{z}\)

Cauchy-Schwarz:

\(\Rightarrow\left(y+z\right)\left(z+x\right)\ge\left(z+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(y+z\right)\left(z+x\right)}\ge z+\sqrt{xy}\)

\(\Rightarrow P\ge\sum\dfrac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\ge\sum\dfrac{xz+yz+x\sqrt{y}+y\sqrt{x}}{z}=\sum x+y+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge\sum x+y+\dfrac{2xy}{z}\)

\(\Rightarrow P\ge2(x+y+z)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\)

Cauchy-Schwarz: \(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\ge\left(\sqrt{\dfrac{xy}{z}.\dfrac{yz}{z}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow P\ge2(x+y+z)+2\left(x+y+z\right)=4\left(x+y+z\right)=4\sqrt{2021}\)

\("="\Leftrightarrow x=y=z=\dfrac{\sqrt{2021}}{3}\)

Bình luận (0)
TL
Xem chi tiết
NT
17 tháng 6 2023 lúc 23:58

1:

a: =7/5(40+1/4-25-1/4)-1/2021

=21-1/2021=42440/2021

b: =5/9*9-1*16/25=5-16/25=109/25

Bình luận (0)
NH
Xem chi tiết
NT
25 tháng 6 2023 lúc 11:17

C=|x-2021|+|1-x|>=|x-2021+1-x|=2020

Dấu = xảy ra khi 1<=x<=2021

Bình luận (1)
KT
Xem chi tiết
AH
4 tháng 9 2021 lúc 18:41

1. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{x-1}=5-\sqrt{x-4}$

$\Rightarrow x-1=25+x-4-10\sqrt{x-4}$

$\Leftrightarrow 22=10\sqrt{x-4}$

$\Leftrightarrow 2,2=\sqrt{x-4}$

$\Leftrightarrow 4,84=x-4\Leftrightarrow x=8,84$

(thỏa mãn)

2. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow (2x-2\sqrt{x})-(5\sqrt{x}-5)=0$

$\Leftrightarrow 2\sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0$

$\Leftrightarrow (\sqrt{x}-1)(2\sqrt{x}-5)=0$

$\Leftrightarrow \sqrt{x}-1=0$ hoặc $2\sqrt{x}-5=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{25}{4}$ (tm)

Bình luận (0)
AH
4 tháng 9 2021 lúc 18:44

3. ĐKXĐ: $x\geq 3$

Bình phương 2 vế thu được:

$3x-2+2\sqrt{(2x+1)(x-3)}=4x$
$\Leftrightarrow 2\sqrt{(2x+1)(x-3)}=x+2$

$\Leftrightarrow 4(2x+1)(x-3)=(x+2)^2$

$\Leftrightarrow 4(2x^2-5x-3)=x^2+4x+4$
$\Leftrightarrow 7x^2-24x-16=0$

$\Leftrightarrow (x-4)(7x+4)=0$

Do $x\geq 3$ nên $x=4$

Thử lại thấy thỏa mãn

Vậy $x=4$

Bình luận (0)
AH
4 tháng 9 2021 lúc 18:45

4. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow (x-4\sqrt{x}+4)+2021\sqrt{x-4}=0$

$\Leftrightarrow (\sqrt{x}-2)^2+2021\sqrt{x-4}=0$

Ta thấy, với mọi $x\geq 4$ thì:

$(\sqrt{x}-2)^2\ge 0$

$2021\sqrt{x-4}\geq 0$ 

Do đó để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

 

Bình luận (0)
H24
Xem chi tiết
H24
12 tháng 9 2021 lúc 16:31

:v e xin kiếu

Bình luận (0)
LL
12 tháng 9 2021 lúc 16:34

Em tham khảo nhé

https://hoc24.vn/cau-hoi/cho-xsqrtx22021ysqrty220212021tinh-axy.332667728355

Bình luận (1)
H24
Xem chi tiết
H24
16 tháng 6 2021 lúc 20:06

`x=\root{3}{4(\sqrt5+1)}-\root{3}{4(\sqrt5-1)}`

`<=>x^3=4(sqrt5+1)-4(\sqrt5-1)-3\root{3}{16(5-1)}(\root{3}{4(\sqrt5+1)}-\root{3}{4(\sqrt5-1)})`

`<=>x^3=4\sqrt5+4-4sqrt5+4-3\root{3}{64}x`

`<=>x^3=8-12x`

`<=>x^3+12x-8=0`

`=>P=(x^3+12-8-1)^2021=(-1)^2021=-1`

*Có gì khum hiểu comment bên dưới.

Bình luận (0)
H24
Xem chi tiết
H9
12 tháng 9 2023 lúc 12:08

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)

\(=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\) khi 

\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)

\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)

\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)

Bình luận (0)
H24
Xem chi tiết
H24
11 tháng 6 2021 lúc 15:08

Chứng minh BĐT phần a có dấu "=" nhé bạn!

a) Ta có : \(\sqrt{a^2}+\sqrt{b^2}\ge\sqrt{\left(a+b\right)^2}\)

\(\Leftrightarrow a^2+b^2+2\sqrt{a^2b^2}\ge\left(a+b\right)^2\)

\(\Leftrightarrow2\left|ab\right|\ge2ab\) ( luôn đúng )

Dấu "=" xảy ra khi \(ab\ge0\)

b) Áp dụng BĐT ở câu a ta có :

\(A=\sqrt{\left(2021-x\right)^2}+\sqrt{\left(2022-x\right)^2}\)

\(=\sqrt{\left(2021-x\right)^2}+\sqrt{\left(x-2022\right)^2}\)

\(\ge\sqrt{\left(2021-x+x-2022\right)^2}=1\)

Dấu "= xảy ra \(\Leftrightarrow2021\le x\le2022\)

Vậy Min \(A=1\) khi \(\Leftrightarrow2021\le x\le2022\)

Bình luận (0)
VT
Xem chi tiết
LL
25 tháng 9 2021 lúc 9:21

a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)

\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)

b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)

\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (2)
NM
25 tháng 9 2021 lúc 9:22

\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (2)
VQ
Xem chi tiết