Viết phương trình đường tròn (C) qua M(3;-6) và:
a) Tiếp xúc với trục hoặc tại A(1;0)
b) Tiếp xúc với trục tung tại B(0;3)
1. viết phương trình đường tròn ngoại tiếp tam giác ABC biết A(-1,1);B(1,3);C(1,-1)
2. viết phương trình đường tròn có tâm I(-2,3) và đi qua M(2,-3)
3. viết phương trình đường tròn có tâm I nằm trên đường thẳng 4x-2y-8=0 biết đường tròn đó tiếp xúc với trục tọa độ
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(3;-2), bán kính 3.
a. Viết phương trình của đường tròn đó.
b. Viết phương trình ảnh của đường tròn (I;3) qua phép tịnh tiến theo vectơ v=(-2 ;1).
c. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng trục Ox.
d. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng qua gốc tọa độ
a. Phương trình đường tròn : (x – 3)2 + (y + 2)2 = 9.
b. (I1; R1) là ảnh của (I; 3) qua phép tịnh tiến theo vec tơ v.
⇒ Phương trình đường tròn cần tìm: (x – 1)2 + ( y + 1)2 = 9.
c. (I2; R2) là ảnh của (I; 3) qua phép đối xứng trục Ox
⇒ R2 = 3 và I2 = ĐOx(I)
Tìm I2: I2 = ĐOx(I) ⇒ ⇒ I2(3; 2)
⇒ Phương trình đường tròn cần tìm: (x – 3)2 + (y – 2)2 = 9.
d. (I3; R3) là ảnh của (I; 3) qua phép đối xứng qua gốc O.
⇒ R3 = 3 và I3 = ĐO(I)
Tìm I3: I3 = ĐO(I) ⇒
⇒ Phương trình đường tròn cần tìm: (x + 3)2 +(y – 2)2 = 9.
Trong hệ trục tọa đô Oxy. Cho đường tròn (C):(x-1)2+(y-2)2=5
a/Viết phương trình đường thẳng (d) đi qua gốc tọa đố và tâm của đường tròn (C)
b/Viết phương trình đường thẳng(Δ) đi qua M(1;3) cắt đường tròn (C) theo dây cung AB có độ dài bằng \(3\sqrt{2}\)
làm nhanh giúp e vs ạ
Đường tròn (C) tâm I(1;2) bán kính \(R=\sqrt{5}\)
a.
\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt
Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)
b.
Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)
Áp dụng định lý Pitago:
\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)
Phương trình \(\Delta\) qua M có dạng:
\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)
\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)
\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)
Cho △ABC biết A(-2;4) B(5;5) C(6;-2)
a) Viết phương trình đường thẳng đi qua C và vuông góc với AB
b) Viết phương trình đường trung tuyến BK
c) Viết phương trình đường tròn tâm B,bán kính AC
d) Viết phương trình đi qua 3 điểm A,B,C
a: vecto AB=(7;1)
=>(d) có VTPT là (7;1)
Phương trình (d) là;
7(x-6)+1(y+2)=0
=>7x+y-40=0
b: Tọa độ K là:
x=(6-2)/2=2 và y=(4-2)/2=1
B(5;5); K(2;1)
vecto BK=(-3;-4)=(3;4)
=>VTPT là (-4;3)
Phương trình BK là:
-4(x-2)+3(y-1)=0
=>-4x+8+3y-3=0
=>-4x+3y+5=0
c: \(AC=\sqrt{\left(6+2\right)^2+\left(-2-4\right)^2}=10\)
Phương trình (C) là:
(x-5)^2+(y-5)^2=10^2=100
Cho tam giác ABC với A(-2; 4); B(5; 5) và C(6; -2)
a) Viết phương trình tổng quát của cạnh BC
b) Viết phương trình đường tròn (C) tâm B, bán kính AC
c) Cho điểm M(-4; -1). Hãy viết phương trình đường thẳng Δ đi qua điểm M sao cho d cắt đường tròn (c) tìm được ở câu b theo một dây cung có độ dài ngắn nhất
a) Ta có: \(\overrightarrow{\text{BC}}\) = (1; -7)
\(\overrightarrow{\text{ }n_{\text{BC}}}\)= (7; 1)
PTTQ: 7(x - 5) + 1(y - 5) = 0
=> 7x - 35 + y - 5 = 0
=> 7x + y - 40 = 0
b) Ta có: \(\overrightarrow{\text{AC}}\) = (8; -6)
=> \(\text{AC}=\sqrt{8^2+6^2}=10\)
Phương trình đường tròn là:
(x + 2)2 + (y - 4)2 = 100
c) (C): (x + 2)2 + (y - 4)2 = 100
Ta có: \(\text{AM}=\sqrt{2^2+5^2}=\sqrt{29}\)
Để HK ngắn nhất => d(A; Δ) lớn nhất
=> d(A; Δ) = AM => AM ⊥ Δ
=> \(\overrightarrow{\text{n}_{\Delta}}\) = \(\overrightarrow{\text{AM}}\)
=> \(\overrightarrow{\text{n}_{\Delta}}\) = (-2; -5)
=> \(\text{2}\left(x+4\right)+5\left(y+1\right)=0\)
=> \(\text{ }2x+5y+13=0\)
cho tam giác abc có a (1,3) b(-2,4) c (5,-1) a) viết phương trình đường tròn tâm B đi qua c b) viết phương trình đường tròn đường kính ac c) viết phương trình đường tròn tâm tiếp xúc cạnh bc d) viết phương trình ngoại tiếp tám giác anc
a)Viết phương trình đường tròn đi qua 3 điểm A(-1;1);B(3;1);C(1;3)
b)Cho (C):x2+y2-4x+6y+3=0 và (Δ):3x-y+m=0.Tìm m để đường thẳng (Δ) tiếp xúc với đường tròn (C)
a) Gọi đường tròn cần tìm là \(\left(C\right):x^2+y^2-2ax-2by+c=0\)
\(A\left(-1;1\right)\in\left(C\right)\Rightarrow1+1+2a-2b+c=0\Rightarrow2a-2b+c=-2\)
\(B\left(3;1\right)\in\left(C\right)\Rightarrow9+1-6a-2b+c=0\Rightarrow-6a-2b+c=-10\)
\(C\left(1;3\right)\in\left(C\right)\Rightarrow1+9-2a-6b+c=0\Rightarrow-2a-6b+c=-10\)
Giải hệ phương trình ta được: \(a=1;b=1;c=-2\)
Vậy đường tròn cần tìm là: \(x^2+y^2-2x-2y-2=0\)
b) Ta có \(\left(C\right):x^2+y^2-4x+6y+3=0\)
\(\Rightarrow a=\dfrac{-4}{-2}=2;b=\dfrac{6}{-2}=-3;c=3\)
\(\Rightarrow I\left(2;-3\right)\) là tâm, bán kính \(R=\sqrt{2^2+\left(-3\right)^2-3}=\sqrt{10}\)
Để \(\left(\Delta\right)\) tiếp xúc đường tròn \(\Leftrightarrow d\left(I;\Delta\right)=R\)
\(\Leftrightarrow\dfrac{\left|9+m\right|}{\sqrt{10}}=\sqrt{10}\Leftrightarrow\left|9+m\right|=10\Leftrightarrow\left[{}\begin{matrix}9+m=10\\9+m=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-19\end{matrix}\right.\)
Trong mặt phẳng Oxy, cho đường tròn tâm \(I\left(3;-2\right)\), bán kính 3
a) Viết phương trình của đường tròn đó
b) Viết phương trình ảnh của đường tròn \(\left(I;3\right)\) qua phép tịnh tiến theo vectơ \(\overrightarrow{v}=\left(-2;1\right)\)
c) Viết phương trình ảnh của đường tròn \(\left(I;3\right)\) qua phép đối xứng qua trục Ox
d) Viết phương trình ảnh của đường tròn \(\left(I;3\right)\) qua phép đối xứng qua gốc tọa độ
Gọi I' là ảnh của I qua phép biến hình nói trên
a) Phương trình của đường tròn (I;3) là ( + = 9
b) (I) = I' (1;-1), phương trình đường tròn ảnh :
c) (I) = I'(3;2), phương trình đường tròn ảnh:
d) (I) = I'( -3;2), phương trình đường tròn ảnh:
Gọi I' là ảnh của I qua phép biến hình nói trên
a) Phương trình của đường tròn (I;3) là ( + = 9
b) (I) = I' (1;-1), phương trình đường tròn ảnh :
c) (I) = I'(3;2), phương trình đường tròn ảnh:
d) (I) = I'( -3;2), phương trình đường tròn ảnh:
Cho đường tròn (C) có phương trình: x − 1 2 + y + 1 2 = 4 . Viết phương trình đường tròn (C’) là ảnh của (C) qua phép đối xứng qua trục Oy.
A. x + 1 2 + y + 1 2 = 4
B. x − 1 2 + y + 1 2 = 4
C. x + 1 2 + y − 1 2 = 4
D. x − 1 2 + y − 1 2 = 4
Đáp án A
Đường tròn (C) có tâm I 1 ; − 1 và bán kính R = 2 . Qua phép đối xứng qua trục Oy tâm I 1 ; − 1 biến thành I ’ − 1 ; − 1 và bán kính R = 2 không đổi.
Vậy đường tròn (C’) là x + 1 2 + y + 1 2 = 4
Trong mặt phẳng tọa đọ Oxy cho điểm \(M\left(2;\dfrac{3}{2}\right)\)
a) Viết phương trình đường tròn (C) có đường kính OM
b) Viết phương trình đường thẳng d đi qua M và cắt hai nửa trục dương Ox, Oy lần lượt tại A, B sao cho diện tích tam giác OAB bằng 6 đơn vị diện tích
c) Tìm tọa độ tâm I của đường tròn nội tiếp (T) của tam giác OAB. Viết phương trình đường tròn đó