Những câu hỏi liên quan
NT
Xem chi tiết
NH
8 tháng 10 2015 lúc 10:29

ĐK :\(x\ge3;x\in N\)

áp dụng công thưc tổ hợp ta có

\(\frac{x!}{\left(x-1\right)!}+6\frac{x!}{\left(x-2\right)!2!}+6\frac{x!}{\left(x-3\right)!3!}=9x^2-14\Rightarrow x+3x\left(x-1\right)+x\left(x-1\right)\left(x-2\right)=9x^2-14x\) 

suy ra \(x+3x^2-3x+\left(x^2-x\right)\left(x-2\right)-9x^2+14x=0\Rightarrow x\left(17-9x+x^2\right)=0\)

giải pt đối chiếu với đk của x ta tìm đc x

Bình luận (0)
NT
Xem chi tiết
NH
8 tháng 10 2015 lúc 10:24

đk x>3,\(x\in N\)

áp dụng công thức tổ hợp và chỉnh hợp ta có

\(A^3_x+C^{x-2}_x=14x\) suy ra \(\frac{x!}{\left(x-3\right)!}+\frac{x!}{\left(x-2\right)!\left(2!\right)}=14x\Rightarrow x\left(x-1\right)\left(x-2\right)+\frac{x\left(x-1\right)}{2}=14x\) suy ra \(x\left[\left(x-1\right)\left(x-2\right)+\frac{x-1}{2}-14\right]=0\)

giair pt ra ta tìm đc x

Bình luận (0)
H24
Xem chi tiết
HH
13 tháng 12 2020 lúc 1:31

Chuyển hết sang vế phải rồi Mode-7 nhập hàm cho nhanh :)

Nhanh là lúc trắc nghiệm thôi, tự luận vẫn phải ngồi "vẽ nét cho thiên hạ ngắm" :(

\(DKXD:\left\{{}\begin{matrix}x\ge2\\x+2\ge1\end{matrix}\right.\Rightarrow x\ge2\)

\(6.\dfrac{x!}{\left(x-2\right)!.2!}-x^2+x-7=\dfrac{\left(x+2\right)!}{\left(x+2-1\right)!}\)

\(\Leftrightarrow\dfrac{3x\left(x-1\right)\left(x-2\right)!}{\left(x-2\right)!}-x^2+x-7=\dfrac{\left(x+2\right)!}{\left(x+1\right)!}\)

\(\Leftrightarrow3.x\left(x-1\right)-x^2+x-7=\dfrac{\left(x+2\right)\left(x+1\right)!}{\left(x+1\right)!}\)

\(\Leftrightarrow3x^2-3x-x^2+x-7=x+2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\dfrac{3}{2}\left(l\right)\end{matrix}\right.\Rightarrow x=3\)

Bình luận (0)
AN
Xem chi tiết
NL
8 tháng 2 2020 lúc 11:24

Câu 1 :

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 2 2020 lúc 11:42

a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)

=> \(3x-3-2x-6=-15\)

=> \(3x-3-2x-6+15=0\)

=> \(x=-6\)

Vậy phương trình có nghiệm là x = -6 .

b, Ta có : \(3\left(x-1\right)+2=3x-1\)

=> \(3x-3+2=3x-1\)

=> \(3x-3+2-3x+1=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .

c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)

=> \(14-35x-5=16-24x\)

=> \(14-35x-5-16+24x=0\)

=> \(-35x+24x=7\)

=> \(x=\frac{-7}{11}\)

Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .

Bài 2 :

a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)

=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)

=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)

=> \(x+15x-3=2x-16-10x-15\)

=> \(x+15x-3-2x+16+10x+15=0\)

=> \(24x+28=0\)

=> \(x=\frac{-28}{24}=\frac{-7}{6}\)

Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .

b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)

=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)

=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)

=> \(6x+24-30x+120=10x-15x+30\)

=> \(6x+24-30x+120-10x+15x-30=0\)

=> \(-19x+114=0\)

=> \(x=\frac{-114}{-19}=6\)

Vậy phương trình có nghiệm là x = 6 .

Bình luận (0)
 Khách vãng lai đã xóa
AN
Xem chi tiết
NL
8 tháng 2 2020 lúc 21:24

Bài 2 :

a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)

c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)

=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)

d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)

e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)

=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)

f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)

=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 2 2020 lúc 21:15

Bài 1 :

a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)

=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)

=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)

=> \(12-3x-9-2x+4=0\)

=> \(-5x=-7\)

=> \(x=\frac{7}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
KL
Xem chi tiết
HN
Xem chi tiết
NM
24 tháng 3 2020 lúc 14:39
https://i.imgur.com/e7kp0cu.jpg
Bình luận (0)
 Khách vãng lai đã xóa
AM
Xem chi tiết
KH
15 tháng 4 2020 lúc 22:01

Do x1 và x2 là 2 nghiệm của pt nên

Theo hệ thức Vi-et:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_1+x_2-2}{\left(x_1-1\right)\left(x_2-1\right)}=\frac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{3-2}{-7-3+1}=-\frac{5}{9}\\x_1x_2=\frac{1}{\left(x_1-1\right)\left(x_2-1\right)}=\frac{1}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{1}{-7-3+1}=-\frac{1}{9}\end{matrix}\right.\)

Theo hệ thức Vi-et đảo:

\(\Rightarrow y^2-y.\left(-\frac{5}{9}\right)+\left(-\frac{1}{9}\right)=0\Leftrightarrow y^2+\frac{5}{9}y-\frac{1}{9}=0\)

Bình luận (0)
KH
15 tháng 4 2020 lúc 22:02

Thiếu :)

Đặt \(y_1=\frac{1}{x_1-1};y_2=\frac{1}{x_2-1}\)

Bình luận (0)
KH
16 tháng 4 2020 lúc 8:28

Anh Mai Vi-et đảo mình cũng học trên mạng :)) nó đây

Định lý Vi-et đảo

Bình luận (0)
TA
Xem chi tiết