giải pt
\(C^1_x+C^2_x+C^3_x=\frac{7}{2}x\)
giải pt
\(C^1_x+6C^2_x+6C^3_x=9x^2-14x\)
ĐK :\(x\ge3;x\in N\)
áp dụng công thưc tổ hợp ta có
\(\frac{x!}{\left(x-1\right)!}+6\frac{x!}{\left(x-2\right)!2!}+6\frac{x!}{\left(x-3\right)!3!}=9x^2-14\Rightarrow x+3x\left(x-1\right)+x\left(x-1\right)\left(x-2\right)=9x^2-14x\)
suy ra \(x+3x^2-3x+\left(x^2-x\right)\left(x-2\right)-9x^2+14x=0\Rightarrow x\left(17-9x+x^2\right)=0\)
giải pt đối chiếu với đk của x ta tìm đc x
GIẢI pt
\(A^3_X+C^{x-2}_x=14x\)
đk x>3,\(x\in N\)
áp dụng công thức tổ hợp và chỉnh hợp ta có
\(A^3_x+C^{x-2}_x=14x\) suy ra \(\frac{x!}{\left(x-3\right)!}+\frac{x!}{\left(x-2\right)!\left(2!\right)}=14x\Rightarrow x\left(x-1\right)\left(x-2\right)+\frac{x\left(x-1\right)}{2}=14x\) suy ra \(x\left[\left(x-1\right)\left(x-2\right)+\frac{x-1}{2}-14\right]=0\)
giair pt ra ta tìm đc x
Giải pt \(6C^2_x-x^2+x-7=A^1_{x+2}\)
Chuyển hết sang vế phải rồi Mode-7 nhập hàm cho nhanh :)
Nhanh là lúc trắc nghiệm thôi, tự luận vẫn phải ngồi "vẽ nét cho thiên hạ ngắm" :(
\(DKXD:\left\{{}\begin{matrix}x\ge2\\x+2\ge1\end{matrix}\right.\Rightarrow x\ge2\)
\(6.\dfrac{x!}{\left(x-2\right)!.2!}-x^2+x-7=\dfrac{\left(x+2\right)!}{\left(x+2-1\right)!}\)
\(\Leftrightarrow\dfrac{3x\left(x-1\right)\left(x-2\right)!}{\left(x-2\right)!}-x^2+x-7=\dfrac{\left(x+2\right)!}{\left(x+1\right)!}\)
\(\Leftrightarrow3.x\left(x-1\right)-x^2+x-7=\dfrac{\left(x+2\right)\left(x+1\right)!}{\left(x+1\right)!}\)
\(\Leftrightarrow3x^2-3x-x^2+x-7=x+2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\dfrac{3}{2}\left(l\right)\end{matrix}\right.\Rightarrow x=3\)
1) Giải các pt:
a) 3(x - 1) - 2(x + 3)= -15
b) 3(x - 1) + 2= 3x - 1
c) 7(2 - 5x) - 5= 4(4 -6x)
2) Giải các pt phân thức: ( Tìm mẫu chung )
a) \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
b) \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
1) Giải các pt:
\(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)
2) Giải các pt tích:
a) (x +4)(x - 1)= 0
b) (3x - 2)(4x - 7)= 0
c) (x + 5)(x\(^2\)+1)=0
d) x(x - 1)(x\(^2\) + 4)= 0
e) (3x + 2) (x + \(\frac{1}{2}\))= 0
f) (x + 2) (x - 3) (x\(^2\) + 7)= 0
Bài 2 :
a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)
c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)
=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)
d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)
e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)
=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)
f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)
=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)
Bài 1 :
a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)
=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)
=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)
=> \(12-3x-9-2x+4=0\)
=> \(-5x=-7\)
=> \(x=\frac{7}{5}\)
1) giải hệ pt \(\hept{\begin{cases}x+y=\sqrt{xy}+3\\\sqrt{x^2+7}+\sqrt{y^2+7}=8\end{cases}}\)
giải pt x^4 +(x-1)(3x^2 +2x-2)=0
tìm m để x(x-2)(x+2)(x+4) =m có 4 nghiệm phân biệt
cho a,b,c>0 thỏa \(a^2+b^2+c^2=3.CM:3\left(a+b+c\right)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge15\)
Bài 1: Giải các pt sau:
a) \(\frac{x-3}{x+1}=\frac{x^2}{x^2-1}\)
b)\(x^3+x^2-12x=0\)
Bài 2: Tìm giá trị của m để pt \(\frac{1}{2}\left(x^2+\frac{7}{4}\right)-2x\left(m-1\right)=2m^2-8\) nhận x=\(\frac{1}{2}\) là nghiệm
Bài 3: Giải pt:\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
Các bạn giúp mk nha mk đang cần gấp.
gọi x1, x2 là 2 nghiệm của pt: x2 -3x-7 = 0. ko giải pt, lập pt bậc 2 có 2 nghiệm là \(\frac{1}{x_1-1};\frac{1}{x_2-1}\)
Do x1 và x2 là 2 nghiệm của pt nên
Theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_1+x_2-2}{\left(x_1-1\right)\left(x_2-1\right)}=\frac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{3-2}{-7-3+1}=-\frac{5}{9}\\x_1x_2=\frac{1}{\left(x_1-1\right)\left(x_2-1\right)}=\frac{1}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{1}{-7-3+1}=-\frac{1}{9}\end{matrix}\right.\)
Theo hệ thức Vi-et đảo:
\(\Rightarrow y^2-y.\left(-\frac{5}{9}\right)+\left(-\frac{1}{9}\right)=0\Leftrightarrow y^2+\frac{5}{9}y-\frac{1}{9}=0\)
Thiếu :)
Đặt \(y_1=\frac{1}{x_1-1};y_2=\frac{1}{x_2-1}\)
Anh Mai Vi-et đảo mình cũng học trên mạng :)) nó đây
Bài 1 Trong các cặp pt sau pt nào là pt tương dương
a 3x - 5 = 0 và (3x - 5)(x + 2) = 0
b x2 + 1 = 0 và 3(x+1) = 3x - 9
c 2x - 3 =0 và x/5 + 1 = 13/10
Bài 2 Giải các pt sau
a 4x - 1 = 3x - 2
b 3x + 7 = 8x - 12
c 1,2 - ( x - 0,8) = -2(0,9 + x)
d 2,3x - 2(0,7 +2x) = 3,6 - 1,7x
e \(\frac{5x-4}{2}=\frac{16x+1}{7}\)
f \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
g \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
h \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
Bài 3 Giải các pt sau
a (x - 1)2 - 9 = 0
b (2x - 1)2 - (x + 3)2 = 0
c 2x2 - 9x + 7 = 0
d x3 - x2 - x + 1 = 0
e (x - 1)(5x + 3) = (3x - 8)(x - 1)
f x2 - 5 = \(\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
g (x + 2)(3 - 4x) = x2 + 4x + 4
h x3 + x2 + x + 1 = 0
Bài 4 Cho pt (m +1)x - 3m = 8
a Giải pt sau khi m = 3
b Với giá trị nào của m thì pt sau vô nghiệm