Những câu hỏi liên quan
SB
Xem chi tiết
TX
16 tháng 3 2020 lúc 19:54

1.

\(\frac{1-2sin\alpha cos\alpha}{sin^2\alpha-cos^2\alpha}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)

\(\Leftrightarrow\frac{1-2sin\alpha cos\alpha}{\left(sin\alpha-cos\alpha\right)\left(sin\alpha+cos\alpha\right)}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=\left(sin\alpha-cos\alpha\right)^2\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=sin^2\alpha+cos^2\alpha-2sin\alpha cos\alpha\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=1-2sin\alpha cos\alpha\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
BH
27 tháng 7 2019 lúc 18:33

1) \(\frac{1-2\sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin^2\alpha+\cos^2\alpha-2sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}\)\(=\frac{\left(sin\alpha-\cos\alpha\right)^2}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\)(đpcm)

2) \(cos^4\alpha+sin^2\alpha\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+\left(1-cos^2\alpha\right)\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+cos^2\alpha-cos^4\alpha+sin^2\alpha\)

\(=cos^2\alpha+sin^2\alpha=1\)(đpcm)

Bình luận (0)
JP
Xem chi tiết
NL
4 tháng 8 2021 lúc 20:04

Đề sai em

Đề đúng: \(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\)

Bình luận (1)
NC
4 tháng 8 2021 lúc 20:13

đề cậu sai rùi

đề đúng 

Bình luận (0)
NL
4 tháng 8 2021 lúc 21:30

\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=\dfrac{sin^2a+cos^2a+2sina.cosa-\left(sin^2a+cos^2a-2sina.cosa\right)}{sina.cosa}\)

\(=\dfrac{4sina.cosa}{sina.cosa}=4\)

Bình luận (0)
DB
Xem chi tiết
AD
25 tháng 7 2023 lúc 11:01

\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)

Bình luận (0)
NT
25 tháng 7 2023 lúc 11:04

a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)

b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)

Bình luận (0)
VH
25 tháng 7 2023 lúc 11:05

a) S= \(cos^2a\left(tg^2a+1\right)=cos^2a.\dfrac{1}{cos^2a}=1\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:16

a) Ta có: \({\left( {\sin \alpha  + \cos \alpha } \right)^2} = {\sin ^2}\alpha  + 2\sin \alpha \cos \alpha  + {\cos ^2}\alpha  = 1 + \sin 2\alpha \;\)

b) \({\cos ^4}\alpha  - {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) = \cos 2\alpha \;\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 22:43

a)

Ta có:

\({\cos ^4}\alpha {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha  - {\sin ^2}\alpha = {\cos ^2}\alpha  - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha  - 1 + {\cos ^2}\alpha  = 2{\cos ^2}\alpha  - 1\)

(đpcm)

b)

Ta có:

\(\frac{{{{\cos }^2}\alpha  + {{\tan }^2}\alpha  - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha  - {{\sin }^2}\alpha  - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha  - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)

(đpcm)

Bình luận (0)
MB
Xem chi tiết
NL
14 tháng 10 2020 lúc 2:05

\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^2a-cos^2a.sin^2a}{cos^2a-sin^2a.cos^2a}\)

\(=\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^2a.sin^2a}{cos^2a.cos^2a}=tan^4a\)

\(sin^4a+cos^4a=\left(sin^2a+cos^2a\right)^2-sin^2a.cos^2a=1-2sin^2a.cos^2a\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
QL
21 tháng 9 2023 lúc 20:46

a)    Ta có:

\(\begin{array}{l}{\sin ^4}\alpha  - {\cos ^4}\alpha  = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha  + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha  - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha  - {\cos ^2}\alpha  - 1 + 2{\cos ^2}\alpha  = 0\\ \Leftrightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)

Đẳng thức luôn đúng

b)    Ta có:

\(\begin{array}{l}\tan \alpha  + \cot \alpha  = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)

Đẳng thức luôn đúng

Bình luận (0)
TM
Xem chi tiết
PA
7 tháng 6 2018 lúc 15:08

a, Sử dụng tích chéo:

Ta có:

+/ \(\cos\alpha.\cos\alpha=\cos^2\alpha\) (1)

+/ \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=1-\sin^2\alpha\)

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow1-\sin^2\alpha=\cos^2\alpha\)

hay \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=\cos^2\alpha\) (2)

Từ (1), (2)

\(\Rightarrow\)\(\cos\alpha.\cos\alpha=\)\(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)\)

\(\Rightarrow\)\(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\) (đpcm)

b/ xem lại đề

Bình luận (1)
ND
Xem chi tiết
AH
1 tháng 10 2018 lúc 23:28

a)

\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)

\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)

\(=2\sin ^2a\)

b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)

\(=1+\cos ^2a-1=\cos ^2a\)

\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)

c)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)

\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)

Bình luận (0)
AH
1 tháng 10 2018 lúc 23:37

d)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)

\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)

f)

\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)

\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)

\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)

Bình luận (0)
AH
1 tháng 10 2018 lúc 23:38

e)

\((1+\cot a)\sin ^3a+(1+\tan a)\cos ^3a\)

\(=(\sin ^3a+\cos ^3a)+\cot a.\sin ^3a+\tan a.\cos^3a\)

\(=(\sin a+\cos a)(\sin ^2a-\sin a\cos a+\cos ^2a)+\frac{\cos a}{\sin a}.\sin ^3a+\frac{\sin a}{\cos a}.\cos ^3a\)

\(=(\sin a+\cos a)(1-\sin a\cos a)+\cos a\sin ^2a+\sin a\cos ^2a\)

\(=\sin a+\cos a-\sin a\cos a(\sin a+\cos a)+\cos a\sin a(\sin a+\cos a)\)

\(=\sin a+\cos a\)

Bình luận (0)