Những câu hỏi liên quan
HT
Xem chi tiết
TD
Xem chi tiết
HN
Xem chi tiết
NL
4 tháng 1 2021 lúc 16:10

Đường tròn có pt:

\(\left(x-1\right)^2+\left(y-1\right)^2=8\)

Tâm \(I\left(1;1\right)\) và \(R=2\sqrt{2}\)

Gọi \(I_1\) là ảnh của I qua phép quay 

\(\Rightarrow\left\{{}\begin{matrix}x_{I1}=1.cos\left(-45^0\right)-1sin\left(-45^0\right)=\sqrt{2}\\y_{I_1}=1.sin\left(-45^0\right)+1.cos\left(-45^0\right)=0\end{matrix}\right.\)

\(\Rightarrow I_1\left(\sqrt{2};0\right)\)

Gọi \(I_2\) là ảnh của \(I_1\) qua phép vị tự:

\(\Rightarrow\left\{{}\begin{matrix}x_{I_2}=-\sqrt{2}.\sqrt{2}=-2\\y_{I_2}=-\sqrt{2}.0=0\end{matrix}\right.\) \(\Rightarrow I_2\left(-2;0\right)\)

\(R_2=\left|-\sqrt{2}\right|.2\sqrt{2}=4\)

Vậy pt đường tròn ảnh có dạng:

\(\left(x+2\right)^2+y^2=16\)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 7 2019 lúc 9:30

Bình luận (0)
PM
Xem chi tiết
H24
12 tháng 12 2020 lúc 11:23

thiếu điểm C k bạn?

Bình luận (0)
H24
Xem chi tiết
NL
10 tháng 4 2021 lúc 17:30

Đường tròn (C) tâm \(I\left(1;-4\right)\) bán kính \(R=4\)

Tiếp tuyến d' song song d nên có dạng: \(5x+12y+c=0\) (với \(c\ne-6\))

d' tiếp xúc (C) khi và chỉ khi:

\(d\left(I;d'\right)=R\Leftrightarrow\dfrac{\left|5.1-12.4+c\right|}{\sqrt{5^2+12^2}}=4\)

\(\Leftrightarrow\left|c-43\right|=52\Rightarrow\left[{}\begin{matrix}c=95\\c=-9\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}5x+12y+95=0\\5x+12y-9=0\end{matrix}\right.\)

Bình luận (1)
NT
Xem chi tiết
H24
Xem chi tiết
NT
21 tháng 5 2022 lúc 20:28

b: Phương trình hoành độ giao điểm là:

\(\dfrac{-1}{2}x^2-4x+16=0\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}+4x-16=0\)

\(\Leftrightarrow x^2+8x-32=0\)

\(\Leftrightarrow\left(x+4\right)^2=48\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\sqrt{3}-4\\x=-4\sqrt{3}-4\end{matrix}\right.\)

Khi \(x=4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\cdot\left(4\sqrt{3}-4\right)^2=-32+16\sqrt{3}\)

Khi \(x=-4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\left(-4\sqrt{3}-4\right)^2=-32-16\sqrt{3}\)

b: Để hai đường song song thì

\(\left\{{}\begin{matrix}m-1=-1\\m+3< >1\end{matrix}\right.\Leftrightarrow m=0\)

Bình luận (0)
NQ
Xem chi tiết
AH
23 tháng 5 2021 lúc 18:42

Lời giải:

Áp dụng định lý Pitago: $OA=\sqrt{1^2+1^2}=\sqrt{2}$

Vì $B\in Ox$ nên tọa độ của $B$ có dạng $(b,0)$

Vì $B$ thuộc đường tròn tâm $O$ bán kính $OA=\sqrt{2}$ nên $|x_B|=OB=OA=\sqrt{2}$. Vậy $B(\pm \sqrt{2},0)$

$C\in Oy$ nên $C$ có tọa độ $(0,c)$

$C$ thuộc đường tròn đường kính $OA$ nên:

$|y_C|=OC=OA=\sqrt{2}$. Vậy $C(0, \pm \sqrt{2})$

 

Bình luận (0)