Những câu hỏi liên quan
MD
Xem chi tiết
NV
8 tháng 2 2023 lúc 20:50

kh hiểu bn ơi

Bình luận (1)
LM
8 tháng 2 2023 lúc 20:55

`4x=2+xx+1x<=>4x=2+3x<=>4x-3x=2<=>1x=2<=>x=2`

Bình luận (1)
H24
Xem chi tiết
H24
29 tháng 4 2019 lúc 16:19

Cho mk xin yêu cầu của bài được ko vậy ???

Bình luận (1)
H24
29 tháng 4 2019 lúc 21:25

a. 2x2-5x+1=0

△= b2 - 4ac = (-5)2 - 4*2*1 = 17 ⇒√△ = √17

\(\Rightarrow x_1=\frac{5+\sqrt{17}}{4};x_2=\frac{5-\sqrt{17}}{4}\)

Vậy .... S={\(\frac{5\pm\sqrt{17}}{4}\)}

b. 4x2 +4x+1=0

⇔(2x+1)2 = 0 ⇔ x=\(\frac{-1}{2}\)

c. -3x2 +2x+8=0

△' = b'2 - ac = 12 - (-3)*8 = 25 ⇒√△ = 5

\(\Rightarrow x_1=\frac{-1+5}{-3}=-\frac{4}{3};x_2=\frac{-1-5}{-3}=2\)

Vậy... S={-\(\frac{4}{3}\);2}

d. 5x2 6x1=0 (thiếu dấu nên mk chưa giải được)

e. -3x2+ 14x - 8=0

△' = b'2 - ac = 72 - (-3)*(-8) = 25 ⇒ √△ = 5

\(x_1=\frac{-7+5}{-3}=\frac{2}{3};x_2=\frac{-7-5}{-3}=4\)

Vậy .... S={\(\frac{2}{3};4\)}

g. -7x2 +4x-3=0

△' = b'2 - ac = 22 - (-7)*(-3) = -17<0

Vậy pt vô nghiệm , S=∅

Bình luận (4)
LD
Xem chi tiết
LL
4 tháng 10 2021 lúc 22:58

a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)

\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)

\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)

c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)

\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)

d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)

e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)

f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)

\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Bình luận (1)
NT
4 tháng 10 2021 lúc 22:55

a: Ta có: \(4x^2+12x+1\)

\(=4x^2+12x+9-8\)

\(=\left(2x+3\right)^2-8\ge-8\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

b: Ta có: \(4x^2-3x+10\)

\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)

\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)

\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)

c: Ta có: \(2x^2+5x+10\)

\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)

\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)

Bình luận (1)
MD
Xem chi tiết
NN
8 tháng 2 2023 lúc 21:21

bạn tách từng bài ra bn

Bình luận (3)
MD
8 tháng 2 2023 lúc 21:43

tl câu hỏi trên cho mik ik

Bình luận (0)
DV
6 tháng 11 2024 lúc 20:37

giải phương trình làm dell gì, lớp 8 mà

Bình luận (0)
XT
Xem chi tiết
NL
4 tháng 3 2022 lúc 9:05

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)

\(B=\dfrac{4x_1-1}{x_2}+\dfrac{4x_2-1}{x_1}=\dfrac{4x_1^2-x_1+4x_2^2-x_2}{x_1x_2}\)

\(=\dfrac{4\left(x_1+x_2\right)^2-8x_1x_2-\left(x_1+x_2\right)}{x_1x_2}=\dfrac{4.\left(-\dfrac{3}{2}\right)^2-8.\left(-\dfrac{1}{2}\right)-\left(-\dfrac{3}{2}\right)}{-\dfrac{1}{2}}=-29\)

Bình luận (0)
VL
Xem chi tiết
NK
4 tháng 3 2021 lúc 18:48

1) \(4x^2-9=0\)

Theo pt ta có: \(a=4;b=0;c=-9\)

\(\Delta=b^2-4ac=0^2-4.4.\left(-9\right)=144>0\)

=> Pt có 2 nghiệm phân biệt

\(x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-0-\sqrt{144}}{2.4}=-\dfrac{3}{2}\\ x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-0+\sqrt{144}}{2.4}=\dfrac{3}{2}\)

2) \(-2x^2+50=0\)

Theo pt ta có: \(a=-2;b=0;c=50\)

\(\Delta b^2-4ac=0^2-4.\left(-2\right).50=400>0\)

=> PT có 2 nghiệm phân biệt

\(x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-0-\sqrt{400}}{2.\left(-2\right)}=5\\ x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-0+\sqrt{400}}{2a}=-5\)

3) \(3x^2+11=0\)

Theo pt ta có: \(a=3;b=0;c=11\)

\(\Delta=b^2-4ac=0^2-4.3.11=-132< 0\)

=> PT vô nghiệm

Bình luận (0)
NM
4 tháng 3 2021 lúc 18:48

1) 4x2 - 9 = 0

=>4x2=9

=>x2=9/4

=>x=\(\pm\dfrac{3}{2}\)

2) - 2x2 + 50 = 0

=>2x2=50

=>x2=25

=>x=\(\pm5\)

 3) 3x2 + 11 = 0 

=>3x2=-11

=>x2=-11/3(vo li)

=>x\(\in\phi\)

Bình luận (0)
PN
4 tháng 3 2021 lúc 19:13

1) 4x- 9 = 0

 Δ = b- 4ac = 02 - 4.4.(-9) = 144 > 0

=> pt đã cho có 2 nghiệm phân biệt :

x1 \(\dfrac{\text{ −b+√Δ}}{2a}=\dfrac{-0+\sqrt{144}}{2.4}=\dfrac{3}{2}\)

x=\(\dfrac{\text{ −b−√Δ}}{2a}=\dfrac{-0-\sqrt{144}}{2.4}=-\dfrac{3}{2}\)

2) - 2x2 + 50 = 0 

\(\Delta=b^2-4ac\) = 0- 4.(-2).50 = 400 > 0

=> pt có 2 nghiệm phân biệt :

x1 = \(\dfrac{-b+\sqrt{\Delta}}{2.a}=\dfrac{-0+\sqrt{400}}{2.\left(-2\right)}=-5\)

x\(\text{​​}\text{​​}\dfrac{-b-\sqrt{\Delta}}{2.a}=\dfrac{-0-\sqrt{400}}{2.\left(-2\right)}=5\)

3) 3x2 + 11 = 0

 Δ = b- 4ac = 02 - 4.3.11 = -132 < 0

=> pt vô nghiệm 

 

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 2 2019 lúc 18:12

Bình luận (0)
H24
Xem chi tiết
H9
18 tháng 8 2023 lúc 17:48

\(x^6+2x^3+1=0\)

\(\Leftrightarrow\left(x^3\right)^2+2x^3+1=0\)

\(\Leftrightarrow\left(x^3+1\right)^2=0\)

\(\Leftrightarrow x^3=\left(-1\right)^3\)

\(\Leftrightarrow x=-1\)

___________

\(x\left(x-5\right)=4x-20\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

_____________

\(x^4-2x^2=8-4x^2\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(4x^2-8\right)=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

_______________

\(\left(x^3-x^2\right)-4x^2+8x-4\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Bình luận (0)
TF
Xem chi tiết
HH
20 tháng 10 2017 lúc 23:02

a) x(4x2-1)=0

=>x(2x-1)(2x+1)=0

=>\(\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

vậy x\(\in\) {\(\dfrac{-1}{2}\) ;0;\(\dfrac{1}{2}\) }

c)x3-x2-x+1=0

=>(x3-x2)-(x-1)=0

=>x2(x-1)-(x-1)=0

=>(x-1)(x2-1)=0

=>\(\left[{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)

Bình luận (1)
NN
Xem chi tiết