choa=n+8/2n-4
tìm nϵz để aϵz
Tìm nϵZ biết 2n-3⋮n+1
\(2\left(n+1\right)-5⋮n-1\Leftrightarrow-5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Ta có: 2n-3=2n+2-5=2(n+1)-5 vậy (2n-3)⋮(n+1)⇔5⋮ (n+1)⇔n+1 ϵ Ư(5)⇔n+1 ϵ { -5; -1; 1;5} ⇔ n ϵ {-6; -2; 0; 4}
\(ĐKXĐ:n+1\ne0\Leftrightarrow n\ne-1\)
\(\dfrac{2n-3}{n+1}=\dfrac{2n+2-5}{n+1}=\dfrac{2\left(n+1\right)-5}{n+1}=2-\dfrac{5}{n+1}\)
Để \(2n-3⋮n+1\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n=\left\{-6;-2;0;4\right\}\)
tìm nϵZ để phân thức \(\dfrac{2n^2+5n-1}{2n-1}\)là số nguyên CẦN GẤP MAI NỘP
\(A=\dfrac{2n^2+5n-1}{2n-1}=\dfrac{\left(2n-1\right)\left(n+3\right)+2}{2n-1}=n+3+\dfrac{2}{2n-1}\)
\(A\in Z\Leftrightarrow\dfrac{2}{2n-1}\in Z\Rightarrow2n-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n=\left\{0;1\right\}\)
tìm các số nguyên n sao cho
a ( n-3) ⋮ ( n + 8 )
b (2n-) ⋮ ( n +2)
a: \(\Leftrightarrow n+8-11⋮n+8\)
\(\Leftrightarrow n+8\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-7;-9;3;-19\right\}\)
b: Đề thiếu rồi bạn
a, \(\dfrac{n-3}{n+8}=\dfrac{n+8-11}{n+8}=1-\dfrac{11}{n+8}\)
\(\Rightarrow n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n+8 | 1 | -1 | 11 | -11 |
n | -7 | -9 | 3 | -19 |
b, bạn bổ sung đề nhé
cho A=3n-5:n+4. Tìm nϵZ để A có giá trị nguyên
Lời giải:
Để $A$ nguyên thì:
$3n-5\vdots n+4$
$\Rightarrow 3(n+4)-17\vdots n+4$
$\Rightarrow 17\vdots n+4$
$\Rightarrow n+4\in \left\{\pm 1; \pm 17\right\}$
$\Rightarrow n\in \left\{-3; -5; 13; -21\right\}$
tìm nϵZ để phân số n+5/n+3 có giá trị nguyên
Để phân số \(\dfrac{n+5}{n+3}\) có giá trị là số nguyên thì:
\(n+5⋮n+3\)
\(\Rightarrow n+3+2⋮n+3\)
\(\Rightarrow2⋮n+3\)
Vì \(n\in N\Rightarrow n+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng sau:
n+3 | 1 | -1 | 2 | -2 |
n | -2 | -4 | -1 | -5 |
Mà \(n\in N\) =>Không có giá trị của n để phân số đã cho nhận giá trị nguyên.
Xin lỗi mình nhìn lộn điều kiện của n.
Bạn chỉ cần làm giống bài mình ở dưới và cho thỏa mãn hết giá trị của n nhé. Nãy mình nhìn ra n là số tự nhiên nên loại hết đấy, vì đề là n thuộc tập sống nguyên nên chọn hết nhé bạn.
Để \(\dfrac{n+5}{n+3}\) là số nguyên thì:
n + 5 \(⋮\) n + 3
n + 3 + 2 \(⋮\) n + 3
\(\Rightarrow\left[{}\begin{matrix}n+3⋮n+3\\2⋮n+3\end{matrix}\right.\)
2 \(⋮\) n + 3
n + 3 \(\in\) Ư (2) = {-2 ; -1 ; 1 ; 2}
Lập bảng
n + 3 | -2 | -1 | 1 | 2 |
n | -5 | -4 | -2 | -1 |
\(\Rightarrow\)\(n\in\) {-5 ; -4 -2 ;-1}
Chứng minh với các phân số sau tối giản với mọi nϵz
\(\dfrac{2n+1}{2n\left(n+1\right)}\)
Đặt \(d=ƯC\left(2n+1;2n^2+2n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+1\right)\left(2n+1\right)-2\left(2n^2+2n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow2n+1\) và \(2n\left(n+1\right)\) nguyên tố cùng nhau hay phân số đã cho tối giản với mọi n nguyên
cho A= n+2/n-5 (n ϵ Z; n khác 0) .tìm x để AϵZ
A = n + 2/n - 5
A thuộc Z
<=> n + 2 chia hết cho n - 5
<=> n - 5 + 7 chia hết cho n - 5
<=> 7 chia hết cho n - 5
<=> n - 5 thuộc Ư(7)
<=> n - 5 thuộc {-7 ; -1 ; 1 ; 7}
<=> n thuộc {-2 ; 4 ; 6 ; 12}
Cho A=2n-3/n+1
Tìm Đk của n để A là phân số
Trả lời nhanh bằng t.i.c.k choa!
cho phân số a = n+1/n-3 (nϵz; n≠ 3)
a) Tìm n để A có giá trị nguyên
b) tìm n để A là phân số tối giản
Có thiệt là lớp 6 không vậy trời