(18-x) - (3-2x) = -5
x =
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Cho A = \(\frac{2x+15\sqrt{x}+18}{x+3\sqrt{x}-18}+\frac{3x+4\sqrt{x}+1}{2x-3\sqrt{x}-5}-\frac{8x-15\sqrt{x}}{2x\sqrt{x}-11x+5\sqrt{x}}\)
Tính A tại \(x=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
14) Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}=\dfrac{2x+4}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x+8}{2\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(x^2+x+x^2-3x-4x-8=0\)
\(\Leftrightarrow2x^2-6x-8=0\)
\(\Leftrightarrow x^2-3x-4=0\)
a=1; b=-3; c=-4
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1\left(loại\right);x_2=\dfrac{-c}{a}=4\left(nhận\right)\)
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
13) Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
Suy ra: \(x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
a) x+1/2x-6-4/2x-6 b) 3x-4/6x+3-x-5/6x+3
c) x-1/x-3-3x-8/3-x+3-2x/x-3 d) 3/x+5-5/x-7
e) 3/x+5-5/x-7 f) 2/x-2+3/x+2+5x-18/x2-4
giải phương trình theo phương pháp đặt ẩn phụ
a) (X+1)^2 x (2X+1)(2X+3)-18
b) (3X-2)^2(6X-5)(6X-3)-5
c) (4X+1)(12X-1)(3X+2)(x+1)-4
d) (6X+5)^2(3X+2)(x+1)-35
e) (2X-1)(X-1)(4X+3)(8X-6)-4
a) (X+1)^2 x (2X+1)(2X+3)-18
=4/4x(x+1)^2 x(2X+1)(2X+3)-18
=1/4 x (2X +2)^2 x (2X+1)(2X+3)-18
đặt y= 2X+2
....còn nữa mà mình ko biết các bạn giúp minh với
các bài còn lại làm tương tự, các bạn giúp mình với
giúp mình bài ni với :3x^2(x+1)-5x(x+1)^2+4(x+1)
Tìm x:
a) x^3 - 25x = 0
b) (2x + 3)^2 = (x+4)^2
c) (2x-1)^2 - (2x-5)(2x+5) = 18
d) x^3 - 8 = (x-2)^3
\(a.\) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-5^2\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
TH1: \(x=0\)
TH2: \(x+5=0\Rightarrow x=-5\)
TH3: \(x-5=0\Rightarrow x=5\)
a, x3-25x = 0
\(\Leftrightarrow\) x( x2- 25) = 0
\(\Leftrightarrow\) x( x- 5)( x+ 5) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: S= { 0; 5; -5}
b, (2x+3)2 = (x+4)2
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+3=x+4\\2x+3=-x-4\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x-x=4-3\\2x+x=-4-3\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm: S= {1; \(\dfrac{-7}{3}\)}
c, (2x-1)2 - (2x-5)(2x+5) = 18
\(\Leftrightarrow\) 4x2- 4x+ 1 - ( 4x2- 25) = 18
\(\Leftrightarrow\) 4x2- 4x+ 1- 4x2+ 25 = 18
\(\Leftrightarrow\) -4x + 26 = 18
\(\Leftrightarrow\) -4x = -8
\(\Leftrightarrow\) x = 2
Vậy phương trình có tập nghiệm S = { 2}
d, x3 - 8 = ( x-2)3
\(\Leftrightarrow\) x3 - 8 = x3 - 6x2 + 12x -8
\(\Leftrightarrow\) 6x2 - 12x = 0
\(\Leftrightarrow\) 6x( x- 2) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm: S = {0; 2}
(x+5).(x-4)-(x+2)^2+(2x+3)^3= (4x^2+1)+18(2x+3) rút gọn
16+x/x^2- 2x+ 18/ 2x-x^2
2y/2x^2+4x/xy_2x^2
4-x^2/ x-3+ 2x-2x^2/3-x+ 5-4x/x-3
a) \(\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)
\(=\dfrac{16+x}{x^2-2x}-\dfrac{18}{x^2-2x}\)
\(=\dfrac{16+x-18}{x^2-2x}\)
\(=\dfrac{x-2}{x\left(x-2\right)}\)
\(=\dfrac{1}{x}\)
Luyện tập phép nhân đa thức
1) 2x. ( x - 5 ) + ( x - 2 ) . ( x + 3 )
2) 3x . ( 2x - 8 ) - ( 2 - 6x ) . ( 5 + x )
3 ) x . ( 3x - 18 ) - 3 . ( x - 4 ) . ( x - 2 ) + 8
1. 2x(x - 5) + (x - 2)(x + 3)
= 2x2 - 10x + x2 + 3x - 2x - 6
= 3x2 - 9x - 6
2;3 tương tự 1