Những câu hỏi liên quan
NT
Xem chi tiết
NL
6 tháng 3 2023 lúc 16:35

Tương tự bài trước, ta có:

\(\dfrac{\left|a.1+b.1\right|}{\sqrt{2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left|a+b\right|=\sqrt{a^2+b^2}\Leftrightarrow\left(a+b\right)^2=a^2+b^2\)

\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Với \(a=0\) chọn \(b=1\) ; với \(b=0\) chọn \(a=1\), vậy có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}0\left(x-2\right)+1\left(y+6\right)=0\\1\left(x-2\right)+0\left(y+6\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y+6=0\\x-2=0\end{matrix}\right.\)

Bình luận (0)
DT
Xem chi tiết
TL
2 tháng 7 2020 lúc 11:14

\(A\left(a;a+1\right);B\left(b;1-2b\right)\\ \Rightarrow\left\{{}\begin{matrix}2x_P=a+b=4\\2y_P=a+1+1-2b=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{8}{3}\\b=\frac{4}{3}\end{matrix}\right.\\ \Rightarrow A\left(\frac{8}{3};\frac{11}{3}\right);B\left(\frac{4}{3};-\frac{5}{3}\right)\\ \Rightarrow\overrightarrow{AB}\left(-\frac{4}{3};-\frac{16}{3}\right)\Rightarrow\overrightarrow{n}_{AB}\left(4;-1\right)\Rightarrow pt\text{ }AB:4x-y-7=0\)

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 3 2021 lúc 22:46

1. Gọi \(M\left(x;y\right)\) là điểm bất kì nằm trên phân giác 

\(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\Leftrightarrow\dfrac{\left|3x-4y-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-12\right|}{\sqrt{12^2+5^2}}\)

\(\Leftrightarrow\left|39x-52y-39\right|=\left|60x+25y-60\right|\)

\(\Rightarrow\left[{}\begin{matrix}60x+25y-60=39x-52y-39\\60x+25y-60=-39x+52y+39\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+11y-3=0\\11x-3y-11=0\end{matrix}\right.\)

Xét \(3x+11y-3=0\) có vtpt \(\left(3;11\right)\)

Ta có: \(cos^{-1}\dfrac{\left|3.3-11.4\right|}{\sqrt{3^2+\left(-4\right)^2}.\sqrt{3^2+11^2}}=52^0>45^0\) (ktm)

\(\Rightarrow11x-3y-11=0\) là pt đường phân giác góc nhọn tạo bởi d1 và d2

Bình luận (0)
NL
18 tháng 3 2021 lúc 22:48

2.

Phương trình d1: \(\sqrt{2}x-\sqrt{2}y+2m=0\)

Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính \(R=1\)

Đường thẳng d1 tiếp xúc với (C) khi và chỉ khi:

\(d\left(O;d_1\right)=R\)

\(\Leftrightarrow\dfrac{\left|2m\right|}{\sqrt{2+2}}=1\Leftrightarrow\left|2m\right|=2\)

\(\Rightarrow m=\pm1\)

Bình luận (0)
TN
11 tháng 4 2022 lúc 0:02

Ta có: d1 giao d2 có tọa độ A(1;0)

nếu ta gắn A(1;0) thành O(0;0) và d2 thành trục Ox

ta có thể ngầm tưởng như sau:

áp dụng công thức tính cos giữa 2 đg thẳng d1 và d2

=> cos alpha=\(\dfrac{16}{65}\)

=> cos giữa d3: đg phân giác của góc nhọn với d2 =\(\sqrt{\dfrac{81}{130}}\)

áp dụng công thức 1+ (tan \(\dfrac{alpha}{2}\))2 =\(\dfrac{1}{cos\left(\dfrac{alpha}{2}\right)^2}\)

=> tan \(\dfrac{alpha}{2}\)=\(\sqrt{\dfrac{1}{\dfrac{81}{130}}-1}\)

tan \(\dfrac{alpha}{2}\)=\(\dfrac{7}{9}\)

mà tan alpha/2=k của d3 và d2

=> d3 có dạng y=\(\dfrac{7}{9}x\)

=> dạng d3 nếu bỏ gắn A thành O và d2 thành trục Ox sẽ có dạng

-by=\(\dfrac{7}{9}x+c\)

Vì d3 đi qua A(1;0)

=>\(-b.0=\dfrac{7}{9}.1+c\)

=>\(c=-\dfrac{7}{9}\)

=>d3:\(\dfrac{7}{9}x+by-\dfrac{7}{9}=0\)

=>\(7x+9by-7=0\)

mà cos alpha/2=\(\sqrt{\dfrac{81}{130}}=\dfrac{\text{| 7.12+9b.5 |}}{\sqrt{7^2+\left(9b\right)^2}\sqrt{12^2+5^2}}\)

\(=>\left[{}\begin{matrix}b=-\dfrac{7}{33}\\b=\dfrac{301}{219}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}7x-\dfrac{21}{11}y-7=0\\7x+\dfrac{903}{73}-7=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}11X-3Y-11=0\\73X+129Y-73=0\end{matrix}\right.\)

Tính cos giữa \(11X-3Y-11=0\)

và d2 thõa mãn yêu cầu nên nhận

cos giữa \(73X+129Y-73=0\)

và d2 ko thõa mãn yêu cầu nên loại

mình mới nghỉ ra cách này thôi, nên còn nhiều thiếu xót

mình mới lớp 10 ak nha :< nên thầy cô nào xem được góp ý hộ con ạ :))

 

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
NT
13 tháng 5 2022 lúc 13:58

a: Gọi pt đường thẳng cần tìm có dạng là (d): x-2y-b=0

Thay x=-1 và y=2 vào (d), ta được:

-1-4-b=0

=>b=-5

Bình luận (0)
KT
Xem chi tiết
NL
24 tháng 4 2021 lúc 15:42

(C) và (C') cùng đi qua AB nên tâm của (C') nằm trên trung trực AB

Tung độ A, B thỏa mãn:

\(y^2+4y+1=0\Rightarrow\dfrac{y_1+y_2}{2}=-2\)

\(\Rightarrow\) Tâm J của (C') có tọa độ dạng: \(\left(a;-2\right)\)

Gọi P là trung điểm MN \(\Rightarrow JP\perp MN\)

\(JP=\left|y_J\right|=2\Rightarrow R'=JM=\sqrt{MP^2+IP^2}=\sqrt{2^2+3^2}=\sqrt{13}\)

Phương trình (C') có dạng: \(\left(x-a\right)^2+\left(y+2\right)^2=13\)

Thay tọa độ \(A\left(0;-2+\sqrt{3}\right)\) vào ta được:

\(a^2+\left(-2+\sqrt{3}+2\right)^2=13\Leftrightarrow a=\pm\sqrt{10}\)

Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+\sqrt{10}\right)^2+\left(y+2\right)^2=13\\\left(x-\sqrt{10}\right)^2+\left(y+2\right)^2=13\end{matrix}\right.\)

Bình luận (0)
TD
Xem chi tiết
NT
15 tháng 11 2023 lúc 21:20

a: Tọa độ A1 là ảnh của A qua phép đối xứng trục Ox là:

\(\left\{{}\begin{matrix}x_{A_1}=x_A=-1\\y_{A_1}=-y_A=-2\end{matrix}\right.\)

Vậy: \(A_1\left(-1;-2\right)\)

b: Tọa độ A2 là ảnh của A qua phép đối xứng trục Oy là:

\(\left\{{}\begin{matrix}x_{A_2}=-x_A=1\\y_{A_2}=y_A=2\end{matrix}\right.\)

Vậy: \(A_2\left(1;2\right)\)

c: Tọa độ giao điểm B của (Δ) với trục Ox là:

\(\left\{{}\begin{matrix}y=0\\2x-y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)

Vậy: B(1/2;0)

Vì B thuộc Ox nên phép đối xứng qua trục Ox biến B thành chính nó

Lấy C(1;1) thuộc (d)

Tọa độ D là ảnh của C qua phép đối xứng trục Ox là:

\(\left\{{}\begin{matrix}x_D=x_C=1\\y_D=-y_C=-1\end{matrix}\right.\)

Vậy: D(1;-1)

Do đó: Δ' là phương trình đường thẳng đi qua hai điểm B(1/2;0); D(1;-1)

\(\overrightarrow{BD}=\left(\dfrac{1}{2};-1\right)=\left(1;-2\right)\)

=>VTPT là (2;1)

Phương trình Δ' là:

\(2\left(x-1\right)+1\left(y+1\right)=0\)

=>2x-2+y+1=0

=>2x+y-1=0

Bình luận (0)
NV
Xem chi tiết
NV
9 tháng 4 2017 lúc 20:39

giúp mình câu c

Bình luận (0)
TD
Xem chi tiết