Những câu hỏi liên quan
H24
Xem chi tiết
NM
15 tháng 9 2021 lúc 14:33

\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=7,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{256}{20}=12,8\left(cm\right)\end{matrix}\right.\)

Vì AD là phân giác nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{12}{16}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)

Mà \(BD+DC=BC=20\Leftrightarrow\dfrac{7}{4}DC=20\Leftrightarrow DC=\dfrac{80}{7}\left(cm\right)\)

\(\Leftrightarrow HD=CH-CD=12.8-\dfrac{80}{7}=\dfrac{48}{35}\left(cm\right)\)

Bình luận (0)
LH
Xem chi tiết
VL
8 tháng 7 2018 lúc 21:38

Áp dụng định lí Pi - ta  go \(\Delta ABC\)vuông tại A :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Áp dụng hẹ thức về cạnh và đường cao cho \(\Delta ABC\) có đường cao AH :

AB.AC=BC.AH

=> AH = AB.AC/BC

=> AH = 12.16/20

=> AH=9, 6( cm )

Ta có : \(\frac{AB^2}{AC^2}=\frac{BC.BH}{BC.CH}=\frac{BH}{CH}=\frac{12^2}{16^2}=\frac{9}{16}\)

\(\Rightarrow CH=\frac{16BH}{9}\)

Áp dụng hệ thức về cạnh và đường cao cho tam giác ABC  và đường cao AH :

\(\Rightarrow BH.\frac{16BH}{9}=AH^2\)

=> BH2 = \(AH^2:\frac{16}{9}=9,6^2:\frac{16}{9}=51,84\)

=> BH = 7,2 ( cm )

=> CH = AH2 / BH = 12,8 ( cm )

Áp dụng tính chất của tia phân giác tam giác ABC phân giác AD

BD/AB=DC/AC

Áp dụng dãy tỉ số bằng nhau :

BD/AB=CD/AC=BD+CD/AB+AC = BC/AB+AC=5/7

=> DC/AC=5/7

=> DC = 5AC/7

=> DC = 80/7 ( cm )

Mà HD + HC = CD

=> HD = 80/7-12,8 = 

Bình luận (0)
KT
8 tháng 7 2018 lúc 21:44

Áp dụng định lý Pytago ta có:

           \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=\sqrt{12^2+16^2}=20\)

Áp dụng hệ thức lượng ta có:

          \(AB^2=HB.BC\)

\(\Rightarrow\)\(HB=\frac{AB^2}{BC}=7,2\)

\(\Rightarrow\)\(HC=BC-HB=12,8\)

AD là phân giác nên ta có:  \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)

suy ra:  \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)  \(\Rightarrow\)\(HD=DB-HB=1\frac{13}{35}\)

            \(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)

      

Bình luận (0)
QN
Xem chi tiết
NL
26 tháng 6 2021 lúc 14:37

- Áp dụng định lý pitago vào tam giác ABC vuông tại A .

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác ABC đường cao AH .

\(AH.BC=AB.AC\)

\(\Rightarrow AH=9,6\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ABH vuông tại H :

\(BH=\sqrt{AB^2-AH^2}=7,2\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ACH vuông tại H :

\(CH=\sqrt{AC^2-AH^2}=12,8\left(cm\right)\)

Ta có : AD là đường phân giác của tam giác ABC .

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BD+CD}=\dfrac{AB+AC}{BC}=1,4\)

=> BD = 60/7 (cm )

=> HD = BD - BH = 48/35 (cm ) .
 

Bình luận (0)
AQ
Xem chi tiết
LL
8 tháng 10 2021 lúc 23:15

a) Xét tam giác ABC có:

\(\left\{{}\begin{matrix}AB^2+AC^2=9^2+12^2=225\\BC^2=15^2=225\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=BC^2\)

=> Tam giác ABC vuông tại A(Pytago đảo)

b) Áp dụng tslg trong tam giác ABC vuông tại A:

\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\\sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}\approx37^0\\\widehat{B}\approx53^0\end{matrix}\right.\)

c) Áp dụng HTL:

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)

\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
HT
8 tháng 10 2021 lúc 23:14

Xét tam giác ABC vuông tại A có Ah đường cao

\(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)

\(\Rightarrow AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)

\(\Rightarrow HC=BC-BH=15-5,4=9,6\left(cm\right)\)

Bình luận (0)
HT
8 tháng 10 2021 lúc 23:07

a) taco BC=15\(\Rightarrow BC^2=225\)

\(AB=9\rightarrow AB^2=81\)

\(AC=12\Rightarrow AC^2=144\)

\(\Rightarrow AB^2+AC^2=81+144=225\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABCvuôngtạiA\)

Bình luận (0)
NS
Xem chi tiết
NT
5 tháng 9 2021 lúc 15:44

Theo Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=\dfrac{36}{5}\)cm 

=> CH = BC - BH = \(20-\dfrac{36}{5}=\dfrac{64}{5}\)cm 

Vì AD là p/g : \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{20}{12+16}=\dfrac{5}{7}\)

\(\Rightarrow BD=\dfrac{5}{7}.12=\dfrac{60}{7}\)cm 

=> HD = BD - BH = \(\dfrac{60}{7}-\dfrac{36}{5}=\dfrac{48}{35}\)cm

Bình luận (0)
NT
5 tháng 9 2021 lúc 15:44

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

nên BC=20(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=7.2\left(cm\right)\\CH=12.8\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
TT
5 tháng 9 2021 lúc 15:47

undefined

Bình luận (0)
NA
Xem chi tiết
AH
20 tháng 6 2023 lúc 17:40

Lời giải:
Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất tia phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$

$\Rightarrow BD=20:(3+4).3=\frac{60}{7}$ (cm) 

Theo hệ thức lượng của tam giác vuông:

$HB=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2$ (cm) 

$CH=BC-HB=20-7,2=12,8$ (cm) 

$HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}$ (cm)

Bình luận (0)
AH
20 tháng 6 2023 lúc 17:44

Hình vẽ:

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 8 2021 lúc 0:41

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=5,4cm\\CH=9,6cm\end{matrix}\right.\)

Bình luận (0)
QE
Xem chi tiết
H24
20 tháng 7 2021 lúc 10:10

Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)

Bình luận (1)
NT
20 tháng 7 2021 lúc 10:15

undefined

Bình luận (0)
MD
Xem chi tiết
LM
13 tháng 10 2019 lúc 20:34

tính bc

tính bd,dc

tính hd,hb,hc

Bình luận (0)
CA
13 tháng 10 2019 lúc 20:52

tự vẽ hình..

\(BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+16^2}=20cm\)( Định lý pitago cho tam giác vuông ABC)

\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2cm\)( Áp dụng hệ thức lương cho tam giác vuông ABC)

\(HC=BC-HB=20-7,2=12,8cm\)

Bình luận (0)
CA
13 tháng 10 2019 lúc 21:00

Áp dụng tính chất tia phân giác: \(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{12+16}=\frac{20}{12+16}=\frac{5}{7}\)

\(\Rightarrow BD=\frac{AB.5}{7}=\frac{12.5}{7}\approx8,571\)( chả biết ý này có đ ko nx)

Bình luận (1)
DH
Xem chi tiết
AH
15 tháng 10 2021 lúc 11:06

a.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago

$CH=BC-BH=10-3,6=6,4$ (cm)

b.

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)

$BC=BH+CH=7,2+12,8=20$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago

 

Bình luận (0)
AH
15 tháng 10 2021 lúc 11:09

c.

$AB.AC=AH.BC=12.25=300$

$AB^2+AC^2=BC^2=625$

$(AB+AC)^2-2AB.AC=625$

$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$

Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:

$X^2-35X+300=0$

$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)

$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

Bình luận (0)
AH
15 tháng 10 2021 lúc 11:15

d.

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BC=\frac{AB^2}{HB}=\frac{15^2}{9}=25$ (cm)

$CH=BC-BH=25-9=16$ (cm)

Áp dụng HTL:

$AH=\sqrt{BH.CH}=\sqrt{9.16}=12$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

e.

$BC=BH+CH=12,5+7,2=19,7$ (cm)

$AH=\sqrt{HB.HC}=\sqrt{12,5.7,2}=3\sqrt{10}$ (cm)

$AB=sqrt{AH^2+BH^2}=\sqrt{(3\sqrt{10})^2+12,5^2}=\frac{\sqrt{985}}{2}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{(3\sqrt{10})^2+7,2^2}=\frac{3\sqrt{394}}{5}$ (cm)

Bình luận (0)