Chương I - Hệ thức lượng trong tam giác vuông

QN

Cho ΔABC : góc A = 90o, AB = 12cm, AC = 16cm. Phân giác AD, đường cao AH. Tính độ dài HB, HD, HC

NL
26 tháng 6 2021 lúc 14:37

- Áp dụng định lý pitago vào tam giác ABC vuông tại A .

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác ABC đường cao AH .

\(AH.BC=AB.AC\)

\(\Rightarrow AH=9,6\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ABH vuông tại H :

\(BH=\sqrt{AB^2-AH^2}=7,2\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ACH vuông tại H :

\(CH=\sqrt{AC^2-AH^2}=12,8\left(cm\right)\)

Ta có : AD là đường phân giác của tam giác ABC .

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BD+CD}=\dfrac{AB+AC}{BC}=1,4\)

=> BD = 60/7 (cm )

=> HD = BD - BH = 48/35 (cm ) .
 

Bình luận (0)

Các câu hỏi tương tự
QE
Xem chi tiết
XL
Xem chi tiết
NP
Xem chi tiết
NP
Xem chi tiết
NK
Xem chi tiết
UD
Xem chi tiết
H24
Xem chi tiết
UD
Xem chi tiết
PL
Xem chi tiết