Violympic toán 9

NS

Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.

NT
5 tháng 9 2021 lúc 15:44

Theo Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=\dfrac{36}{5}\)cm 

=> CH = BC - BH = \(20-\dfrac{36}{5}=\dfrac{64}{5}\)cm 

Vì AD là p/g : \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{20}{12+16}=\dfrac{5}{7}\)

\(\Rightarrow BD=\dfrac{5}{7}.12=\dfrac{60}{7}\)cm 

=> HD = BD - BH = \(\dfrac{60}{7}-\dfrac{36}{5}=\dfrac{48}{35}\)cm

Bình luận (0)
NT
5 tháng 9 2021 lúc 15:44

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

nên BC=20(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=7.2\left(cm\right)\\CH=12.8\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
TT
5 tháng 9 2021 lúc 15:47

undefined

Bình luận (0)

Các câu hỏi tương tự
VP
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NB
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết