DH

Cho tam giác ABC vuông tại A có đường cao AH . Trong các đoạn thẳng sau đây : AB,AC,BC,AH,HB,HC hãy tính các đoạn thẳng còn lại nếu biết :

a. AB=6cm , AC=8cm 

b. AH=9,6cm ,HC=12,8cm

c. AH=12cm , BC=25cm

d. AB=15cm , HB=9cm

e. HB=12,5cm , HC=7,2cm

AH
15 tháng 10 2021 lúc 11:06

a.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago

$CH=BC-BH=10-3,6=6,4$ (cm)

b.

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)

$BC=BH+CH=7,2+12,8=20$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago

 

Bình luận (0)
AH
15 tháng 10 2021 lúc 11:09

c.

$AB.AC=AH.BC=12.25=300$

$AB^2+AC^2=BC^2=625$

$(AB+AC)^2-2AB.AC=625$

$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$

Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:

$X^2-35X+300=0$

$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)

$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

Bình luận (0)
AH
15 tháng 10 2021 lúc 11:15

d.

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BC=\frac{AB^2}{HB}=\frac{15^2}{9}=25$ (cm)

$CH=BC-BH=25-9=16$ (cm)

Áp dụng HTL:

$AH=\sqrt{BH.CH}=\sqrt{9.16}=12$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

e.

$BC=BH+CH=12,5+7,2=19,7$ (cm)

$AH=\sqrt{HB.HC}=\sqrt{12,5.7,2}=3\sqrt{10}$ (cm)

$AB=sqrt{AH^2+BH^2}=\sqrt{(3\sqrt{10})^2+12,5^2}=\frac{\sqrt{985}}{2}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{(3\sqrt{10})^2+7,2^2}=\frac{3\sqrt{394}}{5}$ (cm)

Bình luận (0)
AH
15 tháng 10 2021 lúc 11:16

Hình vẽ:

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
NP
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết
VT
Xem chi tiết
PK
Xem chi tiết
ND
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết