\(\sqrt{x^2+2x+2}=x-1\)
Giải phương trình
a) \(\sqrt{x^2-2x+4}=2x-2\)
b) \(\sqrt{x+2\sqrt{x-1}}=2\)
c) \(\sqrt{2x^2-2x+1}=2x-1\)
d) \(\sqrt{x+4\sqrt{x-4}}=2\)
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-2\geq 0\\ x^2-2x+4=(2x-2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 3x^2-6x=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 3x(x-2)=0\end{matrix}\right.\Leftrightarrow x=2\)
b. ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}=2$
$\Leftrightarrow |\sqrt{x-1}+1|=2$
$\Leftrightarrow \sqrt{x-1}+1=2$
$\Leftrightarrow \sqrt{x-1}=1$
$\Leftrightarrow x=2$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x+1=4x^2-4x+1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=2x(x-1)=0\end{matrix}\right.\Leftrightarrow x=1\) (tm)
d.
ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$
$\Leftrightarrow |\sqrt{x-4}+2|=2$
$\Leftrightarrow \sqrt{x-4}+2=2$
$\Leftrightarrow \sqrt{x-4}=0$
$\Leftrightarrow x=4$ (tm)
a: Ta có: \(\sqrt{x^2-2x+4}=2x-2\)
\(\Leftrightarrow x^2-2x+4=4x^2-8x+4\)
\(\Leftrightarrow-3x^2+6x=0\)
\(\Leftrightarrow-3x\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
b: Ta có: \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow x-1=1\)
hay x=2
c: Ta có: \(\sqrt{2x^2-2x+1}=2x-1\)
\(\Leftrightarrow2x^2-2x+1=4x^2-4x+1\)
\(\Leftrightarrow-2x^2+2x=0\)
\(\Leftrightarrow-2x\left(x-1\right)=0\)
hay x=1
giai cac phuong trinh
a)\(2x^4+5x^3+x^2+5x+2=0\)
b)\(\sqrt{x-1}-\sqrt[3]{2-x}=1\)
c)\(x-\sqrt{x}+1=\sqrt{2x^2-30x+2}\)
d)\(2x^2+3x+7=\left(x-5\right)\sqrt{2x^2+1}\)
e)\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
\(\frac{2x-1}{MTC}+\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{MTC}-\frac{\left(\sqrt{2x}+\sqrt{x}\left(\sqrt{2x}+1\right)\right)}{MTC}\)
=\(\frac{2x-1+x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-2x-\sqrt{2x}-x\sqrt{2}-\sqrt{x}}{MTC}\)
=\(\frac{-2\sqrt{x}-2}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x+1}\right)}\)
Giải các pt sau:
1, \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
2, \(2x^2+2x+6=2x\sqrt{x^2-x+1}+4\sqrt{3x+1}\)
3, \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
4, \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2-2x+3}+\sqrt{x^2-x+2}\)
5, \(13\sqrt{x-1}+9\sqrt{x+1}=16x\)
giải pt :
a, (x+5)(2-x)=3\(\sqrt{x^2+3x}\)
b, \(\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
c,\(\sqrt[5]{\dfrac{16x}{x-1}}+\sqrt[5]{\dfrac{x-1}{16x}}=\dfrac{5}{2}\)
d, \(\sqrt{5x^2+10x+1}=7-2x-x^2\)
e, \(\sqrt{2x^2+4x+1}=1-2x-x^2\)
giải pt :
a, \(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
b, \(\left(x^2+2\right)^2+4\left(x+1\right)^3+\sqrt{x^2+2x+5}=\left(2x-1\right)^2+2\)
c, \(\sqrt{4x^2+x+6}=4x-2+7\sqrt{x+1}\)
d, \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
\(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\)
a, ĐK: \(x\ge1\)
\(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
\(\Leftrightarrow\sqrt{2x-2\sqrt{x^2-1}}+\sqrt{2x+2\sqrt{x^2-1}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x-1+x+1-2\sqrt{\left(x-1\right)\left(x+1\right)}}+\sqrt{x-1+x+1+2\sqrt{\left(x-1\right)\left(x+1\right)}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-\sqrt{x+1}\right)^2}+\sqrt{\left(\sqrt{x-1}+\sqrt{x+1}\right)^2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x+1}-\sqrt{x-1}+\sqrt{x-1}+\sqrt{x+1}=2\sqrt{2}\)
\(\Leftrightarrow2\sqrt{x+1}=2\sqrt{2}\)
\(\Leftrightarrow x+1=2\)
\(\Leftrightarrow x=1\left(tm\right)\)
b, ĐK: \(x\ge-1+\sqrt{2},x\le-1-\sqrt{2}\)
Đặt \(\sqrt{x^2+2x-1}=t\left(t\ge0\right)\)
\(pt\Leftrightarrow2\left(1-x\right)t=t^2-4x\)
\(\Leftrightarrow t^2-4x+2xt-2t=0\)
\(\Leftrightarrow\left(t-2\right)\left(2x+t\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\\sqrt{x^2+2x-1}=-2x\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-1\pm\sqrt{6}\left(tm\right)\)
giải pt
a) \(\sqrt{x+1}+\sqrt{x}+2\sqrt{x^2+x}=1-2x\)
b) \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
c) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
d) \(2\sqrt{x}\left(\sqrt{x+1}-2\sqrt{x}\right)+\sqrt{x+1}+\sqrt{x}=1-6x\)
e) \(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)
Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)
\(\Rightarrow a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)
Mà \(x\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{matrix}\right.\) \(\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)
Dấu "=" xảy ra khi và chỉ khi \(x=0\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\) , pt trở thành:
\(a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow4\sqrt{x-2}=0\Rightarrow x=2\)
c/ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)
\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\), ta được:
\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
\(\Rightarrow x=3\)
d/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow2\sqrt{x^2+x}-4x+\sqrt{x+1}+\sqrt{x}+6x-1=0\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)
Đến đây thì nó giống hệt câu a không khác 1 chữ nào
e/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow x^2+x+3+2x\sqrt{x+3}+x+\sqrt{x+3}-12=0\)
Đặt \(x+\sqrt{x+3}=a\ge-3\Rightarrow a^2=x^2+x+3+2x\sqrt{x+3}\)
Phương trình trở thành:
\(a^2+a-12=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x+\sqrt{x+3}=3\)
\(\Leftrightarrow\sqrt{x+3}=3-x\) (\(x\le3\))
\(\Leftrightarrow x+3=\left(3-x\right)^2\)
\(\Leftrightarrow x^2-7x+6=0\Rightarrow\left[{}\begin{matrix}x=1\\x=6\left(l\right)\end{matrix}\right.\)
1) \(x+\sqrt{1-x^2}< x\sqrt{1-x^2}\)
2)\(\dfrac{1}{\sqrt{2x^2+3x-3}}>\dfrac{1}{2x-1}\)
3)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}< 2x+\dfrac{1}{2x}+4\)
giúp mình ạ
Bài 1: Giải ptrình
a) \(-2\sqrt{2}x-1=2\sqrt{2}x^2+2x+3\)
b) \(x^2-2\sqrt{3}x-\sqrt{3}=2x^2+2x+\sqrt{3}\)
c) \(\sqrt{3}x^2+2\sqrt{5}x-3\sqrt{3}=-x^2-2\sqrt{3}x+2\sqrt{3}+1\)
a: =>\(x^2\cdot2\sqrt{2}+x\left(2+2\sqrt{2}\right)+4=0\)
\(\text{Δ}=\left(2\sqrt{2}+2\right)^2-4\cdot2\sqrt{2}\cdot4=12-24\sqrt{2}< 0\)
=>PTVN
b:
\(\Leftrightarrow2x^2+2x+\sqrt{3}-x^2+2\sqrt{3}x+\sqrt{3}=0\)
=>\(x^2+x\left(2\sqrt{3}+2\right)+2\sqrt{3}=0\)
\(\text{Δ}=\left(2\sqrt{3}+2\right)^2-4\cdot2\sqrt{3}=16>0\)
PT có hai nghiệm là;
\(\left\{{}\begin{matrix}x_1=\dfrac{-2\sqrt{3}-2-4}{2}=-\sqrt{3}-3\\x=\dfrac{-2\sqrt{3}-2+4}{2}=-\sqrt{3}+1\end{matrix}\right.\)