GIẢI PHƯƠNG TRÌNH
1. \(16x-13\sqrt{x-1}=9\sqrt{x+1}.\)
2. \(x^2-1=2x\sqrt{x^2-2x}\)
3. \(\left(x+3\right).\sqrt{\left(4-x\right)\left(12+x\right)}=28-x\)
4. \(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
giải pt vô tỉ sau bằng phương pháp đặt ẩn phụ
a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
b)\(\sqrt[3]{x+5}+\sqrt[3]{4-x}=\sqrt[3]{x+24}\)
Giải phương trình:
a, \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
b, \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\frac{x-1}{x-2}=3}\)
Giải pt \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
Giải phương trình
a, \(\sqrt{x^2-x+9}=2x+1\)
b. \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)
c. \(x^2-3x-10+3\sqrt{x.\left(x-3\right)}=0\)
d. \(\sqrt{2-x}+\sqrt{4-x}=x^2-6x+11\)
e. \(x+6\sqrt{x+8}+4\sqrt{6-2x}=27\)
Giải phương trình
1) \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)
2) \(9x^2-x-4=2\sqrt{x+3}\)
3) \(x^2+\sqrt{x+5}=5\)
4) \(2x^2+2x+1=\left(4x-1\right).\sqrt{x^2+1}\)
5) \(x\sqrt{x^2-x+1}+2\sqrt{3x+1}=x^2+x+3\)
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
giải các pt
1, \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
2, \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
3, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
4, \(2x^2+\sqrt{x^2-4x+12}=4x+8\)
5, \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Giải pt:
\(a)x^{4}-2\sqrt{2}x^{2}+2=\sqrt{2}+x \\b)(2x+3)\sqrt{x^{2}-2}=2x^{2}+3x-4 \\c)2x^{2}+2(x+1)\sqrt{x^{2}-1}-6x+1=0\)