Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

JE

giải pt

a) \(\sqrt{x+1}+\sqrt{x}+2\sqrt{x^2+x}=1-2x\)

b) \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)

c) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)

d) \(2\sqrt{x}\left(\sqrt{x+1}-2\sqrt{x}\right)+\sqrt{x+1}+\sqrt{x}=1-6x\)

e) \(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)

NL
25 tháng 11 2019 lúc 20:56

a/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)

Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)

\(\Rightarrow a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)

\(x\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{matrix}\right.\) \(\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)

Dấu "=" xảy ra khi và chỉ khi \(x=0\)

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)

Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)

\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\) , pt trở thành:

\(a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)

\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)

\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)

\(\Leftrightarrow4\sqrt{x-2}=0\Rightarrow x=2\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
25 tháng 11 2019 lúc 21:01

c/ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)

\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\), ta được:

\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)

\(\Rightarrow x=3\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
25 tháng 11 2019 lúc 21:10

d/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2\sqrt{x^2+x}-4x+\sqrt{x+1}+\sqrt{x}+6x-1=0\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)

Đến đây thì nó giống hệt câu a không khác 1 chữ nào

e/ ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow x^2+x+3+2x\sqrt{x+3}+x+\sqrt{x+3}-12=0\)

Đặt \(x+\sqrt{x+3}=a\ge-3\Rightarrow a^2=x^2+x+3+2x\sqrt{x+3}\)

Phương trình trở thành:

\(a^2+a-12=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x+\sqrt{x+3}=3\)

\(\Leftrightarrow\sqrt{x+3}=3-x\) (\(x\le3\))

\(\Leftrightarrow x+3=\left(3-x\right)^2\)

\(\Leftrightarrow x^2-7x+6=0\Rightarrow\left[{}\begin{matrix}x=1\\x=6\left(l\right)\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
JE
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
JE
Xem chi tiết
EC
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
TH
Xem chi tiết
JE
Xem chi tiết