Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 2 2017 lúc 9:45

Chọn B.

Ta có: Δ = (m - 2 ) 2  - (m - 1)(m - 3) = ( m 2  - 4m + 4 ) - ( m 2  - 4m + 3) = 1 > 0

Phương trình có hai nghiệm phân biệt x1, x2.

Áp dụng hệ thức Vi-ét ta có:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Ta có:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Bình luận (0)
NT
Xem chi tiết
NT
4 tháng 4 2021 lúc 22:22

a) Thay x=0 vào phương trình, ta được:

\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)

\(\Leftrightarrow m+1=0\)

hay m=-1

Áp dụng hệ thức Vi-et, ta có: 

\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)

\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)

Bình luận (1)
NS
Xem chi tiết
H24
23 tháng 2 2022 lúc 21:32

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
DT
Xem chi tiết
H24
23 tháng 5 2022 lúc 21:32

Ptr có nghiệm `<=>\Delta' >= 0`

                       `<=>[-(m+1)]^2-(m^2+4) >= 0`

                       `<=>m^2+2m+1-m^2-4 >= 0`

                       `<=>m >= 3/2`

Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`

Ta có:`C=x_1+x_2-x_1.x_2+3`

`<=>C=2m+2-m^2-4+3`

`<=>C=-m^2+2m+1`

`<=>C=-(m^2-2m+1)+2`

`<=>C=-(m-1)^2+2`

 Vì `-(m-1)^2 <= 0 AA m >= 3/2`

`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`

Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)

Vậy không tồn tại `m` để `C` có `GTLN`

Bình luận (0)
AQ
Xem chi tiết
NL
5 tháng 4 2022 lúc 16:57

\(\Delta=1-4\left(m+1\right)>0\Rightarrow m< -\dfrac{3}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1^2+x_1x_2+3x_2=7\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)+3x_2=7\)

\(\Leftrightarrow x_1+3x_2=7\)

Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1+3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-2\\x_2=3\end{matrix}\right.\)

Thế vào \(x_1x_2=m+1\)

\(\Rightarrow m+1=-6\Rightarrow m=-7\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 5 2019 lúc 13:17

Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6

= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8

⇒ A = m - 2 2 - 12 ≥ 12

Suy ra  m i n   A = - 12 ⇔ m = 2

m = 2 thỏa mãn (*)

Vậy với  m = 2  thì biểu thức A đạt giá trị nhỏ nhất.

Đáp án cần chọn là: A

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 8 2018 lúc 13:07

Bình luận (0)
HN
Xem chi tiết
TH
14 tháng 3 2021 lúc 17:38

Tại mk lười dùng delta nên bn làm delta cũng tương tự vậy nha!

Ta có: x2 - 4x + 5m - 2 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 5m - 6 = 0

\(\Leftrightarrow\) (x - 2)2 = 6 - 5m

\(\Leftrightarrow\) x - 2 = \(\pm\)\(\sqrt{6-5m}\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x_1=\sqrt{6-5m}+2\\x_2=-\sqrt{6-5m}+2\end{matrix}\right.\)

Ta có: x12 . x2 + x1 . x22 = 12

\(\Leftrightarrow\) (\(\sqrt{6-5m}+2\))2\(\left(-\sqrt{6-5m}+2\right)\) + \(\left(\sqrt{6-5m}+2\right)\) \(\left(-\sqrt{6-5m}+2\right)^2\) = 12

\(\Leftrightarrow\) (4 - 6 + 5m)(\(\sqrt{6-5m}+2-\sqrt{6-5m}+2\)) = 12

\(\Leftrightarrow\) (-2 + 5m).4 = 12

\(\Leftrightarrow\) -2 + 5m = 3

\(\Leftrightarrow\) m = 1

Vậy ...

Chúc bn học tốt!

Bình luận (1)
PP
Xem chi tiết
NL
18 tháng 4 2021 lúc 22:07

\(\Delta'=1-4\left(m+1\right)=-4m-3>0\Rightarrow m< -\dfrac{3}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1^2+x_1x_2=7-3x_2\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)=7-3x_2\)

\(\Leftrightarrow x_1=7-3x_2\)

\(\Leftrightarrow x_1+x_2=7-2x_2\)

\(\Leftrightarrow1=7-2x_2\Rightarrow x_2=3\Rightarrow x_1=1-x_2=-2\)

Thế vào \(x_1x_2=m+1\Rightarrow-6=m+1\Rightarrow m=-7\)

Bình luận (0)