\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\frac{1}{x^2}\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Gpt:
Bài quá dễ tự làm đi
k mình mình giải cho
Bạn nói dễ mà bạn không chịu làm thì bạn nói làm gì ???
giải giúp mình mấy phương trình này với
a, \(16x^4+5=6\sqrt[3]{4x^3+x}\)
b,\(\sqrt{\text{-}4x^4y^2+16x^2y+9}-\sqrt{x^2y^2\text{-}2y^2}=2\left(x^2+\frac{1}{x^2}\right)\)
c,\(\sqrt{x^2+2y^2\text{-}6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}=4\)
d, \(2\sqrt[4]{27x^2+24x+\frac{28}{3}}=1+\sqrt{\frac{27}{2}x+6}\)
e, \(\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
iải giúp mình mấy phương trình này với
\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\dfrac{1}{x^2}\right)\)
Giải phương trình:
1)\(\sqrt{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)
2)\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\)
3)\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\frac{1}{x^2}\right)\left(vớix>0\right)\)
4)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
5)\(4x^2-11x+10=\left(x+1\right)\sqrt{2x^2-6x+2}\)
Giải pt vô tỉ sau : \(\sqrt{-4x^4y^2+16x^2y+9}\)_\(\sqrt{x^2y^2-2y^2}\)=2(\(x^2\)+\(\frac{1}{x^2}\))
cách giải hay nè: =
=
=
Đặt =
=> =
=> = .ta có hệ:
Đến Đây thì đơn giản rồi.chứ nân ra thì muốn ói
câu 55 nhé thôi viết luôn vậy
ta có pt <=>\(x-1-2\sqrt{x-1}+1-\left(x-1\right).\sqrt{x}+\sqrt{x-1}.\sqrt{x}=0\)
<=> \(\left(\sqrt{x-1}-1\right)^2-\sqrt{x}.\sqrt{x-1}\left(\sqrt{x-1}-1\right)=0\)
rồi nhóm vào nhé, chi linh ơi ở đât này
1) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)
1)\(\begin{cases}x^2-y\left(x+y\right)+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{cases}\)
2)\(\begin{cases}x^2-4x+y^4+4y^2=2\\xy^2+2y^2+6x=23\end{cases}\)
3)\(\begin{cases}2x+\frac{1}{x+y}=3\\4x^2+4y^2+4xy+\frac{3}{\left(x+y\right)^2}=7\end{cases}\)
4)\(\begin{cases}y^6+x^9+3y^4+3y^2=8\\4y^2-3x^3y^2+x^3=2\end{cases}\)
5)\(\begin{cases}\sqrt{x+y}-2\sqrt{x-y}=1\\x+\sqrt{x^2+y^2}=8\end{cases}\)
6) \(\begin{cases}x+y-2=\frac{y}{x^2+1}\\x^2+y^2+xy=y-1\end{cases}\)
7) \(\begin{cases}4x-1=\sqrt{\left(2x+y\right).\left(2y+1\right)}\\\sqrt{x+2y+1}-\sqrt{x+y-1}=\sqrt{x-1}\end{cases}\)
8) \(\begin{cases}\left(x+y\right).\left(x+4y^2+y\right)+3y^4=0\\\sqrt{x+2y^2+1}-y^2+y+1=0\end{cases}\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
a, giải pt 1, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
2, \(\sqrt{2x+1}+3\sqrt{4x^2-2x+1}=3+\sqrt{8x^3+1}\)
b, giải hpt 1, \(\left\{{}\begin{matrix}x^2+4y^2-5=0\\4x^2y+8xy^2+5x+10y-1=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2-2x+2y-3=0\\16x^2-8xy^2+y^4-2y+4=0\end{matrix}\right.\)
a/ ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)
\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\)
Phương trình trở thành:
\(a=a^2-12\Leftrightarrow a^2-a-12=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)
\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)
\(\Leftrightarrow x^2-16=x^2-16x+64\)
\(\Rightarrow x=5\)
b/ \(x\ge-\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\\\sqrt{4x^2-2x+1}=b\end{matrix}\right.\) ta được:
\(a+3b=3+ab\)
\(\Leftrightarrow ab-a-\left(3b-3\right)=0\)
\(\Leftrightarrow a\left(b-1\right)-3\left(b-1\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{4x^2-2x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=9\\4x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
a/ \(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy-5=0\\4xy\left(x+2y\right)+5\left(x+2y\right)-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2y\right)^2-\left(4xy+5\right)=0\\\left(4xy+5\right)\left(x+2y\right)-1=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+2y=a\\4xy+5=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-b=0\\ab=1\end{matrix}\right.\) \(\Rightarrow a^2-\frac{1}{a}=0\Rightarrow a^3-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+2y=1\\4xy+5=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1-2y\\4y\left(1-2y\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-2y\\-8y^2+4y+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=-\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)
b/Cộng vế với vế:
\(17x^2-2\left(4y^2+1\right)x+y^4+1=0\)
\(\Delta'=\left(4y^2+1\right)^2-17\left(y^4+1\right)=-y^4+8y^2-16\)
\(\Delta'=-\left(y^2-4\right)^2\ge0\Rightarrow y^2-4=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
- Với \(y=2\) \(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)
\(\)- Với \(y=-2\Rightarrow x^2-2x-7=0\Rightarrow x=1\pm2\sqrt{2}\)
Giải hệ phương trình sau:
\(\left\{\begin{matrix}2x^3+xy^2+x=2y^3+4x^2y+2y\left(1\right)\\\sqrt{4x^2+x-6}-5\sqrt{1+2y}=1-4y\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x-2y\right)\left(2x^2+y^2+1\right)=0\Leftrightarrow x=2y\).Thay vào (2) ta có phương trình \(\sqrt{4x^2+x+6}+2x=1+5\sqrt{x+1}\left(3\right)\)
\(\Leftrightarrow\sqrt{4x^2+x+6}-\left(1-2x\right)=5\sqrt{x+1}\Leftrightarrow\frac{x+1}{\sqrt{4x^2+x+6}+1-2x}=\sqrt{x+1}\)
\(\Leftrightarrow\left[\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt{4x^2+x+6}+1-2x=\sqrt{x+1}\left(4\right)\end{matrix}\right.\)
Kết hợp (3) và (4) ta được \(2\sqrt{x+1}=2x-1\Leftrightarrow\left\{\begin{matrix}x\ge\frac{1}{2}\\4x^2-8x+3=0\end{matrix}\right.\Leftrightarrow x=\frac{2+\sqrt{7}}{2}\)
P/S:Phương trình đã cho có 2 nghiệm :\(x=-1;x=\frac{2+\sqrt{7}}{2}\)