Đề số 2

H24

Giải hệ phương trình sau:

\(\left\{\begin{matrix}2x^3+xy^2+x=2y^3+4x^2y+2y\left(1\right)\\\sqrt{4x^2+x-6}-5\sqrt{1+2y}=1-4y\left(2\right)\end{matrix}\right.\)

LA
8 tháng 2 2017 lúc 7:42

\(\left(1\right)\Leftrightarrow\left(x-2y\right)\left(2x^2+y^2+1\right)=0\Leftrightarrow x=2y\).Thay vào (2) ta có phương trình \(\sqrt{4x^2+x+6}+2x=1+5\sqrt{x+1}\left(3\right)\)

\(\Leftrightarrow\sqrt{4x^2+x+6}-\left(1-2x\right)=5\sqrt{x+1}\Leftrightarrow\frac{x+1}{\sqrt{4x^2+x+6}+1-2x}=\sqrt{x+1}\)

\(\Leftrightarrow\left[\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt{4x^2+x+6}+1-2x=\sqrt{x+1}\left(4\right)\end{matrix}\right.\)

Kết hợp (3) và (4) ta được \(2\sqrt{x+1}=2x-1\Leftrightarrow\left\{\begin{matrix}x\ge\frac{1}{2}\\4x^2-8x+3=0\end{matrix}\right.\Leftrightarrow x=\frac{2+\sqrt{7}}{2}\)

P/S:Phương trình đã cho có 2 nghiệm :\(x=-1;x=\frac{2+\sqrt{7}}{2}\)

Bình luận (2)

Các câu hỏi tương tự
TC
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
TC
Xem chi tiết
QT
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết