Viết phương trình đường tròn biết: đường kính AB với A(3;3) và B(1;5)
Viết phương trình đường tròn biết: đường kính AB với A(3;3) và B(1;5)
Gọi \(I\left(x_I;y_I\right)\) là trung điểm \(AB\) ( đồng thời là tâm đường tròn)
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{3+1}{2}=2\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{3+5}{2}=4\end{matrix}\right.\)
\(\Rightarrow I\left(2;4\right)\)
\(\overrightarrow{AB}=\left(-2;2\right)\)\(\Rightarrow AB=\sqrt{\left(-2\right)^2+2^2}=2\sqrt{2}\)
Bán kính \(R=\dfrac{AB}{2}=\dfrac{2\sqrt{2}}{2}=\sqrt{2}\)
Vậy pt đường tròn \(\left(C\right):\left(x-2\right)^2+\left(y-4\right)^2=2\)
Gọi O(x; y) là tâm đường tròn
⇒O(2; 4)
⇒vectơ OA(1; -1)
⇒ R = |OA| = √2
Vậy phương trình đường tròn:
(x - 2)² + (y - 4)² = 2
viết phương trình đường tròn đường kính ab. biết a(4;-1) ,b(1;-4)
Tọa độ tâm I là:
x=(4+1)/2=5/2 và y=(-1-4)/2=-5/2
=>I(2,5;-2,5)
\(IA=\sqrt{\left(2,5-4\right)^2+\left(-2,5+1\right)^2}=\dfrac{3\sqrt{2}}{2}\)
Phương trình (C) là:
(x-2,5)^2+(y+2,5)^2=9/2
Viết phương trình đường tròn đường kính AB với A(-1;-2), B(-3;0)
Tọa độ tâm I là:
\(\left\{{}\begin{matrix}x_I=\dfrac{-1-3}{2}=-2\\y_I=\dfrac{-2+0}{2}=-1\end{matrix}\right.\)
\(R=AI=\sqrt{\left(-2+1\right)^2+\left(-1+2\right)^2}=\sqrt{2}\)
Phương trình đường tròn là:
\(\left(x+2\right)^2+\left(y+1\right)^2=2\)
Câu 12: Trong mặt phẳng tọa độ, cho A(-1;-3),B(-3;5). a. Viết phương trình tham số của đường thẳng AB. b. Viết phương trình đường tròn đường kính AB.
\(AB\left\{{}\begin{matrix}quaA\left(-1;-3\right)\\VTCP\overrightarrow{AB}=\left(-2;8\right)\end{matrix}\right.\)
\(PTTS\) của \(AB:\left\{{}\begin{matrix}x=-1-2t\\y=-3+8t\end{matrix}\right.\)
Gọi \(I\left(x_I;y_I\right)\) là tâm đường tròn
\(I\) là trung điểm \(AB\)
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1-3}{2}=-2\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{-3+5}{2}=1\end{matrix}\right.\)
\(\Rightarrow I\left(-2;1\right)\)
\(AB=\sqrt{\left(-2\right)^2+8^2}=2\sqrt{17}\)
Mà \(R=\dfrac{AB}{2}=\dfrac{2\sqrt{17}}{2}=\sqrt{17}\)
Vậy \(PT\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=17\)
Cho A(1;2) , B(5;2) a), Viết phương trình đường tròn nhận AB làm đường kính. b), viết phương trình đường tròn tâm A và đi qua B.
\(\overrightarrow{AB}=\left(4;0\right)\Rightarrow AB=4\)
Gọi I là trung điểm AB \(\Rightarrow I\left(3;2\right)\)
Đường tròn đường kính AB nhận I là trung điểm và có bán kính \(R=\dfrac{AB}{2}=2\)
Phương trình: \(\left(x-3\right)^2+\left(y-2\right)^2=4\)
b.
\(R=AB=4\)
Phương trình: \(\left(x-1\right)^2+\left(y-2\right)^2=16\)
a, Tâm I của đường tròn: \(I=\left(\dfrac{1+5}{2};\dfrac{2+2}{2}\right)=\left(3;2\right)\)
Bán kính: \(R=\dfrac{AB}{2}=\dfrac{\sqrt{\left(5-1\right)^2+\left(2-2\right)^2}}{2}=2\)
Phương trình đường tròn: \(\left(x-3\right)^2+\left(y-2\right)^2=4\)
b, Tâm I của đường tròn: \(I\equiv A=\left(1;2\right)\)
Bán kính: \(R=AB=\sqrt{\left(5-1\right)^2+\left(2-2\right)^2}=4\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-2\right)^2=16\)
Cho A (-3;-2) B (1;-4)
a) Viết phương trình tham số của đường thẳng AB
b) Viết phương trình đường tròn tâm A bán kính AB
a: vecto AB=(4;-2)
=>Phương trình tham số là:
\(\left\{{}\begin{matrix}x=-3+4t\\y=-2-2t\end{matrix}\right.\)
b: \(AB=\sqrt{\left(1+3\right)^2+\left(-4+2\right)^2}=\sqrt{4^2+2^2}=2\sqrt{5}\)
Phương trình đường tròn tâm A bán kính AB là:
(x+3)^2+(y+2)^2=20
Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(1;2), B(3;-1), C(-2;1)
a) Viết phương trình tổng quát của AB và tính diện tích tam giác ABC
b) Viết phương trình đường tròn đường kính AB
a) Viết phương trình tổng quát của AB và tính diện tích tam giác ABC
Phương trình tổng quát của AB là: 3(x - 1) + 2(y - 2) = 0 ⇔ 3x + 2y - 7 = 0
Kẻ CH ⊥ AB, (H ∈ AB)
Diện tích tam giác ABC là:
b) Viết phương trình đường tròn đường kính AB
Gọi I là trung điểm của AB
Đường tròn đường kính AB là đường tròn tâm I bán kính IA:
Viết phương trình đường tròn (C) trong trường hợp sau
(C) có đường kính AB với A(1;1), B(7;5)
Tọa độ tâm là:
\(\left\{{}\begin{matrix}x_O=\dfrac{1+7}{2}=4\\y_O=\dfrac{1+5}{2}=3\end{matrix}\right.\)
Vậy: Tọa độ tâm là O(4;3)
\(OA=\sqrt{\left(4-1\right)^2+\left(3-1\right)^2}=\sqrt{13}\)
Phương trình đường tròn là:
\(\left(x-4\right)^2+\left(y-3\right)^2=13\)
cho tam giác ABC A(-1;3), B(1;-5), C(2;-4)
a) Viết phương trình tham số của đường thẳng chứa cạnh AB,BC
b) Viết phương trình đường tròn đường kính AC
help meee
Cho △ABC biết A(-2;4) B(5;5) C(6;-2)
a) Viết phương trình đường thẳng đi qua C và vuông góc với AB
b) Viết phương trình đường trung tuyến BK
c) Viết phương trình đường tròn tâm B,bán kính AC
d) Viết phương trình đi qua 3 điểm A,B,C
a: vecto AB=(7;1)
=>(d) có VTPT là (7;1)
Phương trình (d) là;
7(x-6)+1(y+2)=0
=>7x+y-40=0
b: Tọa độ K là:
x=(6-2)/2=2 và y=(4-2)/2=1
B(5;5); K(2;1)
vecto BK=(-3;-4)=(3;4)
=>VTPT là (-4;3)
Phương trình BK là:
-4(x-2)+3(y-1)=0
=>-4x+8+3y-3=0
=>-4x+3y+5=0
c: \(AC=\sqrt{\left(6+2\right)^2+\left(-2-4\right)^2}=10\)
Phương trình (C) là:
(x-5)^2+(y-5)^2=10^2=100