Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TH
Xem chi tiết
NL
27 tháng 12 2020 lúc 23:45

\(VT=\left(x^2-3x+\dfrac{9}{4}\right)+\left(y^2+\dfrac{z^2}{4}+4-yz-4y+2z\right)+\dfrac{3}{4}\left(z^2-\dfrac{8z}{3}+\dfrac{16}{9}\right)-\dfrac{91}{12}\)

\(VT=\left(x-\dfrac{3}{2}\right)^2+\left(y-\dfrac{z}{2}-2\right)^2+\dfrac{3}{4}\left(z-\dfrac{4}{3}\right)^2-\dfrac{91}{12}\ge-\dfrac{91}{12}>-7\)

Bình luận (1)
SN
Xem chi tiết
NH
5 tháng 11 2021 lúc 21:40

undefined

Bình luận (0)
NA
Xem chi tiết
NH
17 tháng 3 2023 lúc 11:54

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}\)  = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)

\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\)) (2) 

Từ (1) và (2) ta có :

\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)

Bình luận (0)
HN
17 tháng 3 2023 lúc 13:39

 ⇒ �2�2=�2�2=�2�2 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

�2�2  = �2�2 = �2�2 = �2+�2+�2�2+�2+�2 = �2+�2+�21 = �2+�2+�2

Bình luận (0)
MM
Xem chi tiết
LL
27 tháng 12 2021 lúc 8:37

\(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2\forall x\in R\)

Bình luận (1)
TC
Xem chi tiết
H24
Xem chi tiết
NT
21 tháng 10 2021 lúc 20:50

a: \(2x^2+2x+1=0\)

\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)

Vì Δ<0 nên phương trình vô nghiệm

Bình luận (0)
OY
21 tháng 10 2021 lúc 20:52

a) \(2x^2+2x+1=0\)

\(\Rightarrow2x^2+2x=-1\)

\(\Rightarrow2x\left(x+1\right)=-1\)

⇒ Pt vô nghiệm

 

 

Bình luận (0)
OY
21 tháng 10 2021 lúc 21:00

b) \(x^2+y^2+2xy+2x+2y+1=0\)

\(\Rightarrow\left(x^2+y^2+2xy\right)+\left(2x+2y+1\right)=0\)

\(\Rightarrow\left(x+y\right)^2+2\left(x+y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\2\left(x+y+1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x+y+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x+y=-1\end{matrix}\right.\)

⇒ Pt vô nghiệm

Bình luận (2)
NT
Xem chi tiết
NT
26 tháng 7 2023 lúc 22:33

a: x>2

y>2

=>x+y>2+2=4

x>y>2

=>xy>2^2=4

b: x^2-xy=x(x-y)

x-y>0; x>0

=>x(x-y)>0

=>x^2-xy>0

y>2

=>y-2>0

=>y(y-2)>0

=>y^2-2y>0

x>y và y>2

=>y>0 và x-y>0

=>y(x-y)>0

=>xy-y^2>0

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 5 2019 lúc 5:43

Mặt cầu (S) tâm I(1; -2; -1) bán kính R = 5

d(I,(P)) = 3 < R

Do đó (P) cắt (S) theo một đường tròn, gọi đường tròn đó là (C).

Bình luận (0)
TM
Xem chi tiết
LL
2 tháng 10 2021 lúc 19:53

\(-y^2+2y-4=-\left(y^2-2y+1\right)-3=-\left(y-1\right)^2-3\le-3< 0\forall y\)

Bình luận (0)