Cho f(x)=a x^2+b. Tính f(2012)-f(-2012)
cho \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\). hãy tính giá trị biểu thức sau: \(A=f\left(\dfrac{1}{2012}\right)+f\left(\dfrac{2}{2012}\right)+...+f\left(\dfrac{2010}{2012}\right)+f\left(\dfrac{2011}{2012}\right)\)
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
cho đa thức f(x)=ax^2+bx+c
a) biết f(0)=0,f(1)=2013 và f(-1)=2012.tính a,b,c
b)CMR nếu f(1)=2012,f(-2)=f(3)=2036 thì đa thức f(x) vô nghiệm
a, Theo bài ra ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2013\\a-b=2012\end{cases}}\)
Cộng vế với vế \(a+b+a-b=2013+2012\Leftrightarrow2a=4025\Leftrightarrow a=\frac{4025}{2}\)
\(\Rightarrow b=\frac{4025}{2}-2012=\frac{1}{2}\)
Vậy \(a=\frac{4025}{2};b=\frac{1}{2};c=0\)
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}\)hãy tính giá trị biểu thức
\(A=f\left(\frac{1}{2012}\right)+f\left(\frac{2}{2012}\right)+...+f\left(\frac{2010}{2012}\right)+f\left(\frac{2011}{2012}\right)\)
Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Áp dụng ta có :
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)
\(=1+1+...+1\)(Có tất cả 1006 số 1)
\(=1006\)
cho da thuc f(x)=ax^2+bx+c
a.Biet f(0)=0,f(1)=2013,f(-1)=2012.Tính a,b c
b.Chứng minh rằng nếu f(1)=2012;f(-2)=f(3)=2036 thì đa thức f(x) vo nghiem
giải chi tiết giùm mình nha
câu a
ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}\Rightarrow\hept{\begin{cases}c=0\\a=2012,5\\b=0,5\end{cases}}}\)
câu b , do \(f\left(-2\right)=f\left(3\right)\Leftrightarrow4a-2b+c=9a+3b+c=2036\)
\(f\left(1\right)=a+b+c=2012\Rightarrow\hept{\begin{cases}a=4\\b=-4\\c=2012\end{cases}}\)do đó \(f\left(x\right)=4x^2-4x+2012=\left(2x-1\right)^2+2011>0\)với mọi x,
Bài 1 : Cho hàm số: y= f(x)= a.x2+b.x+c cho biết f(0)=2010, f(1)=2011, f(-1)=2012, Tính f(-2).
Bài 2 : Cho hàm số: y= f(x)= a.x2+b.x+c cho biết f(0)=2010, f(1)=2011, f(-1)=2012, Tính f(-2).
Bài 3 : Cho hàm số: y= f(x)= a.x2+b.x+c cho biết f(0)=2010, f(1)=2011, f(-1)=2012, Tính f(-2).
Bài 4 : Cho đa thức: f(x)= x2-a.x-3 và g(x)= (x3-x2-x-a-1)2015
a, Tìm a biết -1 là 1 nghiệm của f(x)
b, Với a tìm được ở câu a, Tìm nghiệm còn lại của f(x) và tính g(2).
Bài 5: Cho hàm số y= f(x)= a.x2+b.x+c và biết f(0)=2014, f(1)=2015, f(-1)=2017 ,
Tính f(-2).
Mọi người giúp mình với ạ mình đang cần gấp. Mình cảm ơn mọi người nhiều.
Bài 1 : làm tương tự với bài 2;3 nhé
Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)
\(\Rightarrow f\left(1\right)=a+b=1\)
\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)
\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)
Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)
Cho hàm số f(x) = ax^2+b. Ta có f(2012)-f(-2012)
Cho đa thức f(x)=ax²+bx+c
A, biết f(0)=0, f(1)=2013 và f(-1)=2012. Tính a b c
B, Chứng minh rằng nếu f(1)=2012; f(-2)=f(-3)=2036 thì đa thức f(x) vô nghiệm
Cho \(f(x)=\frac{x^3}{1-3x+3x^2}\)Hãy tính giá trị của biểu thức sau
\(A=f(\frac{1}{2012})+f(\frac{2}{2012})+...+f(\frac{2010}{2012})+f(\frac{2011}{2012})\)
\(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
Ta có \(f\left(x\right)+f\left(1-x\right)=1\) khi đó
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)
\(=1+1+...+1+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\frac{1}{2}+3.\left(\frac{1}{2}\right)^2}=1005+\frac{1}{2}=\frac{2011}{2}\)
Ta có: \(F\left(x\right)=\frac{x^3}{1-3x+3x^2}\)
\(\Leftrightarrow F\left(1-x\right)=1-\frac{x^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)
\(=\frac{\left(1-x\right)^3}{1-3x+3x^2}\)
Ta có: \(F\left(x\right)+F\left(1-x\right)\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
\(\Leftrightarrow F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)=1\)
...
\(F\left(\frac{1005}{2012}\right)+F\left(\frac{1007}{2012}\right)=1\)
Do đó: \(A=F\left(\frac{1}{2012}\right)+F\left(\frac{2}{2012}\right)+...+F\left(\frac{2010}{2012}\right)+F\left(\frac{2011}{2012}\right)\)
\(=\left[F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)\right]+\left[F\left(\frac{2}{2012}\right)+F\left(\frac{2010}{2012}\right)\right]+...+F\left(\frac{1006}{2012}\right)\)
\(=1+1+...+F\left(\frac{1}{2}\right)\)
\(=1005+\left[\left(\frac{1}{2}\right)^3:\left(1-3\cdot\frac{1}{2}+3\cdot\frac{1}{4}\right)\right]\)
\(=1005+\left[\frac{1}{8}:\left(1-\frac{3}{2}+\frac{3}{4}\right)\right]\)
\(=1005+\left(\frac{1}{8}:\frac{1}{4}\right)\)
\(=1005+\frac{1}{2}=\frac{2011}{2}\)
\(f\left(1-x\right)=\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}=\frac{1-3x+3x^2-x^3}{3x^2-3x+1}\)
\(\Rightarrow f\left(x\right)+f\left(1-x\right)=\frac{x^3}{3x^2-3x+1}+\frac{1-3x+3x^2-x^3}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Do đó:
\(A=f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)+...+f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)+f\left(\frac{1}{2}\right)\)
\(=f\left(\frac{1}{2012}\right)+f\left(1-\frac{1}{2012}\right)+...+f\left(\frac{1005}{2012}\right)+f\left(1-\frac{1005}{2012}\right)+f\left(\frac{1}{2}\right)\)
\(=1+1+...+1+f\left(\frac{1}{2}\right)\)
\(=1005+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\left(\frac{1}{2}\right)+3.\left(\frac{1}{2}\right)^2}=...\)
Cho f(x)=\(\frac{^{x^3}}{1-3x+3x^2}\) .Tính giá trị biểu thức sau
A= f\(\left(\frac{1}{2012}\right)\)+f\(\left(\frac{2}{2012}\right)\)+...+f\(\left(\frac{2011}{2012}\right)\)
Đễ dàng chưng minh được
\(f\left(1-x\right)=1-f\left(x\right)\)
\(\Rightarrow f\left(1-x\right)+f\left(x\right)=1\)
\(\Rightarrow A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)
\(=1005+f\left(\frac{1006}{2012}\right)\)
Làm nôt