Violympic toán 9

NN

Cho \(f(x)=\frac{x^3}{1-3x+3x^2}\)Hãy tính giá trị của biểu thức sau

\(A=f(\frac{1}{2012})+f(\frac{2}{2012})+...+f(\frac{2010}{2012})+f(\frac{2011}{2012})\)

HP
24 tháng 10 2020 lúc 22:11

\(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

Ta có \(f\left(x\right)+f\left(1-x\right)=1\) khi đó

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)

\(=1+1+...+1+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\frac{1}{2}+3.\left(\frac{1}{2}\right)^2}=1005+\frac{1}{2}=\frac{2011}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
24 tháng 10 2020 lúc 22:14

Ta có: \(F\left(x\right)=\frac{x^3}{1-3x+3x^2}\)

\(\Leftrightarrow F\left(1-x\right)=1-\frac{x^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)

\(=\frac{\left(1-x\right)^3}{1-3x+3x^2}\)

Ta có: \(F\left(x\right)+F\left(1-x\right)\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

\(\Leftrightarrow F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)=1\)

...

\(F\left(\frac{1005}{2012}\right)+F\left(\frac{1007}{2012}\right)=1\)

Do đó: \(A=F\left(\frac{1}{2012}\right)+F\left(\frac{2}{2012}\right)+...+F\left(\frac{2010}{2012}\right)+F\left(\frac{2011}{2012}\right)\)

\(=\left[F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)\right]+\left[F\left(\frac{2}{2012}\right)+F\left(\frac{2010}{2012}\right)\right]+...+F\left(\frac{1006}{2012}\right)\)

\(=1+1+...+F\left(\frac{1}{2}\right)\)

\(=1005+\left[\left(\frac{1}{2}\right)^3:\left(1-3\cdot\frac{1}{2}+3\cdot\frac{1}{4}\right)\right]\)

\(=1005+\left[\frac{1}{8}:\left(1-\frac{3}{2}+\frac{3}{4}\right)\right]\)

\(=1005+\left(\frac{1}{8}:\frac{1}{4}\right)\)

\(=1005+\frac{1}{2}=\frac{2011}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
24 tháng 10 2020 lúc 22:15

\(f\left(1-x\right)=\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}=\frac{1-3x+3x^2-x^3}{3x^2-3x+1}\)

\(\Rightarrow f\left(x\right)+f\left(1-x\right)=\frac{x^3}{3x^2-3x+1}+\frac{1-3x+3x^2-x^3}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)

Do đó:

\(A=f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)+...+f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)+f\left(\frac{1}{2}\right)\)

\(=f\left(\frac{1}{2012}\right)+f\left(1-\frac{1}{2012}\right)+...+f\left(\frac{1005}{2012}\right)+f\left(1-\frac{1005}{2012}\right)+f\left(\frac{1}{2}\right)\)

\(=1+1+...+1+f\left(\frac{1}{2}\right)\)

\(=1005+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\left(\frac{1}{2}\right)+3.\left(\frac{1}{2}\right)^2}=...\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AJ
Xem chi tiết
DF
Xem chi tiết
HN
Xem chi tiết
BV
Xem chi tiết
ND
Xem chi tiết
LB
Xem chi tiết
NN
Xem chi tiết
TB
Xem chi tiết
AJ
Xem chi tiết