Giải các hệ pt
a/ x+y = 4 và x^2*y + y^2*x = 12
b/ 2x+y=1 và 3x^2 - y^2 - xy +2x - 3y +14=0
giải hệ phương trình sau
\(\dfrac{\sqrt{2x-1}}{\sqrt{y+2}}+\dfrac{\sqrt{y+2}}{\sqrt{2x-1}}=2\)
\(x+y=12\)
ĐKXĐ : \(\left\{{}\begin{matrix}2x-1>0\\y+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>-2\end{matrix}\right.\)
PT ( I ) \(\Leftrightarrow\left(\sqrt{\dfrac{2x-1}{y+2}}+\sqrt{\dfrac{y+2}{2x-1}}\right)^2=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}+2\sqrt{\left(\dfrac{2x-1}{y+2}\right)\left(\dfrac{y+2}{2x-1}\right)}=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}=2\)
Từ PT ( II ) ta được : \(x=12-y\)
- Thế x vào PT trên ta được : \(\dfrac{2\left(12-y\right)}{y+2}+\dfrac{y+2}{2\left(12-y\right)}=2\)
\(\Leftrightarrow4\left(y-12\right)^2+\left(y+2\right)^2=4\left(12-y\right)\left(y+2\right)\)
\(\Leftrightarrow4\left(y^2-24y+144\right)+y^2+4y+4=4\left(12y+24-y^2-2y\right)\)
\(\Leftrightarrow4y^2-96y+576+y^2+4y+4-40y-96+4y^2=0\)
\(\Leftrightarrow9y^2-132y+484=0\)
\(\Leftrightarrow y=\dfrac{22}{3}\left(TM\right)\)
- Thay lại vào PT ta được : \(x=\dfrac{14}{3}\)
Vậy phương trình có nghiệm là \(S=\left\{\left(\dfrac{22}{3};\dfrac{14}{3}\right);\left(\dfrac{14}{3};\dfrac{22}{3}\right)\right\}\)
1) {x^2+2x^2=3 {2x^2+3x^2=5 2) giải theo m {x+y=2m+1 {x-y=1 3)giải theo m {x +2y=3m+2 {2x+y=3m+2 4) cho hệ. {x+3y=4m+4 {2x+y=3m+3 Tìm m để hệ có nghiệm (x,y) thỏa mãn x+y=4 HỆ PHƯƠNG TRÌNH HẾT Ạ Giúp mik với nhé
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
Bài tập : Giải các hệ pt
a/ x+y = 4 và x^2*y + y^2*x = 12
b/ 2x+y=1 và 3x^2 - y^2 - xy +2x - 3y +14=0
giải hệ : (x+y)(x^2+4xy+y^2)=12 v căn(xy).(x+2y).(y+2x)=9
Giải bất phương trình, hệ phương trình
\(\dfrac{x^2-\left|x\right|-12}{x-3}=2x\)
\(\left\{{}\begin{matrix}y+y^2x=-6x^2\\1+x^3y^3=19x^3\end{matrix}\right.\)
b.
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) hệ tương đương:
\(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\\\dfrac{1}{x^3}+y^3=19\end{matrix}\right.\)
Đặt \(\left(\dfrac{1}{x};y\right)=\left(u;v\right)\) ta được: \(\left\{{}\begin{matrix}uv^2+u^2v=-6\\u^3+v^3=19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3uv^2+3u^2v=-18\\u^3+v^3+19\end{matrix}\right.\)
Cộng vế với vế:
\(\left(u+v\right)^3=1\Rightarrow u+v=1\)
Thay vào \(u^2v+uv^2=-6\Rightarrow uv=-6\)
Theo Viet đảo, u và v là nghiệm của:
\(t^2-t-6=0\) \(\Rightarrow\left[{}\begin{matrix}t=-2\\t=3\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(-2;3\right);\left(3;-2\right)\)
\(\Rightarrow\left(\dfrac{1}{x};y\right)=\left(-2;3\right);\left(3;-2\right)\)
\(\Rightarrow\left(x;y\right)=\left(-\dfrac{1}{2};3\right);\left(\dfrac{1}{3};-2\right)\)
a.
ĐKXĐ: \(x\ne3\)
- Với \(x\ge0\) pt trở thành:
\(\dfrac{x^2-x-12}{x-3}=2x\Rightarrow x^2-x-12=2x^2-6x\)
\(\Leftrightarrow x^2-5x+12=0\) (vô nghiệm)
- Với \(x< 0\) pt trở thành:
\(\dfrac{x^2+x-12}{x-3}=2x\Rightarrow\dfrac{\left(x-3\right)\left(x+4\right)}{x-3}=2x\)
\(\Rightarrow x+4=2x\Rightarrow x=4>0\) (ktm)
Vậy pt đã cho vô nghiệm
Giải hệ phương trình sau
\(\left\{{}\begin{matrix}x+y+\sqrt{y-2x}=x^2+2\\x^2+y-3xy=x+10\end{matrix}\right.\)
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
giải các hệ phương trình
a)\(\left\{{}\begin{matrix}x^2+y^2=1\\x^3+y^3=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{5}{12}\\x^2+y^2=1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2-xy+y^2=3\\2x^2-xy+3y^2=12\end{matrix}\right.\)