Những câu hỏi liên quan
NM
Xem chi tiết
NM
4 tháng 11 2021 lúc 8:48

\(a,=3\sqrt{5}-2\sqrt{5}-\sqrt{5}+5\sqrt{5}=5\sqrt{5}\\ b,=9\sqrt{a}-6\sqrt{a}-\sqrt{a}=2\sqrt{a}\\ c,Sửa:3\sqrt[3]{27}-3\sqrt[3]{-8}-3\sqrt[3]{-125}\\ =3\cdot3-3\left(-2\right)-3\left(-5\right)\\ =9+6+15=30\)

Bình luận (0)
LT
Xem chi tiết
AT
19 tháng 7 2021 lúc 17:04

a) \(5\sqrt{25a^2}-25=25\left|a\right|-25==-25a-25\left(a< 0\right)\)

b) \(\sqrt{49a^2}+3a=7\left|a\right|+3a=-7a+3a\left(a< 0\right)=-4a\)

c) \(3\sqrt{9a^6}=9\left|a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)

Bình luận (0)
NT
19 tháng 7 2021 lúc 17:09

a) 5\(\sqrt{25a^2}\) - 25 với a < 0

= 5\(\sqrt{\left(5a\right)^2}\) - 25

= 5.\(\left|5a\right|\) - 25

= 5.-(5a) - 25 

= -25a - 25 Vì a < 0

b) \(\sqrt{49a^2}\) + 3a với a < 0

\(\sqrt{\left(7a\right)^2}\) + 3a

\(\left|7a\right|\) + 3a

= -7a + 3a Vì a < 0

= -4a

c) 3\(\sqrt{9a^6}\) - 6a3 với a bất kì

= 3\(\sqrt{\left(3a^3\right)^2}\) - 6a3

= 3\(\left|3a^3\right|\) - 6a3

= 9a3 - 6a3

= 3a3

 Chúc bạn học tốt

Bình luận (1)
NT
19 tháng 7 2021 lúc 18:42

a) \(5\sqrt{25a^2}-25=-25a-25\)

b) \(\sqrt{49a^2}+3a=-7a+3a=-4a\)

c) \(3\sqrt{9a^6}-6a^3=6a^3-6a^3=0\)

Bình luận (0)
DD
Xem chi tiết
NT
5 tháng 8 2021 lúc 20:47

a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Để \(A< -\dfrac{1}{3}\) thì \(A+\dfrac{1}{3}< 0\)

\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{3}< 0\)

\(\Leftrightarrow\dfrac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-6< 0\)

\(\Leftrightarrow x< 36\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 36\\x\ne9\end{matrix}\right.\)

Bình luận (0)
HL
Xem chi tiết
NT
17 tháng 12 2023 lúc 13:24

a: \(\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}\)

\(=\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{2}=\dfrac{4}{2}=2\)

b: \(\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}\)

\(=\dfrac{\sqrt{6}}{\sqrt{15}}=\sqrt{\dfrac{6}{15}}=\sqrt{\dfrac{2}{5}}=\dfrac{\sqrt{10}}{5}\)

c: \(\sqrt{9a}+\sqrt{81a}+3\sqrt{25a}-16\sqrt{49a}\)

\(=3\sqrt{a}+9\sqrt{a}+3\cdot5\sqrt{a}-16\cdot7\sqrt{a}\)

\(=27\sqrt{a}-112\sqrt{a}=-85\sqrt{a}\)

d: \(\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\sqrt{ab}-\sqrt{bc}}\)

\(=\sqrt{ab}+\sqrt{bc}\)

e: \(a\left(\sqrt{\dfrac{a}{b}+2\sqrt{ab}+b\cdot\sqrt{\dfrac{a}{b}}}\right)\cdot\sqrt{ab}\)

\(=a\cdot\sqrt{\dfrac{a}{b}\cdot ab+2\sqrt{ab}\cdot ab+b\cdot\sqrt{\dfrac{a}{b}}\cdot ab}\)

\(=a\cdot\sqrt{a^2+2\cdot ab\cdot\sqrt{ab}+a\sqrt{a}\cdot b\sqrt{b}}\)

\(=a\cdot\sqrt{a^2+3\cdot a\cdot\sqrt{a}\cdot b\cdot\sqrt{b}}\)

e: ĐKXĐ: a>=0 và a<>1

\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\left(a-\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)^2\cdot\left(a-\sqrt{a}+1\right)\)

Bình luận (0)
KA
Xem chi tiết
H9
20 tháng 8 2023 lúc 12:39

a) \(\left(2a-3\right)\left(a+1\right)-\left(a^2+6a+9\right):\left(a+3\right)\)

\(=\left(2a^2+2a-3a-3\right)-\left(a+3\right)^2:\left(a+3\right)\)

\(=2a^2-a-3-\left(a+3\right)\)

\(=2a^2-a-3-a-3\)

\(=2a^2-2a-6\)

b) \(\left(3x-5y\right)\left(-xy\right)^2-3x^2y^2+4x^2y^3\)

\(=\left(3x-5y\right)\cdot x^2y^2-3x^2y^2+4x^2y^3\)

\(=3x^3y^2-5x^2y^3-3x^2y^2+4x^2y^3\)

\(=3x^3y^2-x^2y^3-3x^2y^2\)

c) \(x\left(x-2\right)^2-\left(x+2\right)\left(x^2-2x+4\right)+4x^2\)

\(=x\left(x^2-4x+4\right)-\left(x^3+8\right)+4x^2\)

\(=x^3-4x^2+4x-x^3-8+4x^2\)

\(=\left(x^3-x^3\right)+\left(-4x^2+4x^2\right)+4x-8\)

\(=4x-8\)

Bình luận (0)
LL
Xem chi tiết
H24
28 tháng 6 2021 lúc 16:09

-Chia nhỏ ra bạn ơi để nhận được câu tl sớm nhất.

-Bạn đặt không mất gì nên cứ đặt thoải mái đuyyy.

-Để dài như này khum ai làm đouuu.

Bình luận (0)
NT
28 tháng 6 2021 lúc 19:23

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{x-3\sqrt{x}}\right):\dfrac{2}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{2}\)

\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

b) Thay \(x=3-2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{\sqrt{2}-1+1}{2\cdot\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}=\dfrac{2+\sqrt{2}}{2}\)

c) Để \(A< \dfrac{2}{3}\) thì \(\dfrac{\sqrt{x}+1}{2\sqrt{x}}-\dfrac{2}{3}< 0\)

\(\Leftrightarrow\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{6\sqrt{x}}< 0\)

\(\Leftrightarrow-\sqrt{x}+3< 0\)

\(\Leftrightarrow-\sqrt{x}< -3\)

\(\Leftrightarrow\sqrt{x}>3\)

hay x>9

Vậy: Để \(A< \dfrac{2}{3}\) thì x>9

Bình luận (0)
MV
Xem chi tiết
NT
9 tháng 7 2021 lúc 11:09

a) Ta có: \(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}-6\sqrt{a}\)

\(=-\sqrt{a}-15a\sqrt{a}+12\sqrt{a}b\)

b) Ta có: \(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)

\(=8b\sqrt{a}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45a^2b\sqrt{ab}\)

Bình luận (0)
LH
9 tháng 7 2021 lúc 11:12

a)\(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}=5\sqrt{a}-15\left|a\right|\sqrt{a}+12\left|b\right|\sqrt{a}-6\sqrt{a}=-\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}\)

b)\(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)

\(=8\left|b\right|\sqrt{ab}-6\left|ab\right|\sqrt{3ab}+6ab\sqrt{ab}-45b\left|a\right|\sqrt{ab}\)

\(=8b\sqrt{ab}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=8b\sqrt{ab}-6ab\sqrt{3ab}-39ab\sqrt{ab}\)

Bình luận (0)
H24
9 tháng 7 2021 lúc 11:13

undefined

Bình luận (0)
HV
Xem chi tiết
H9
8 tháng 7 2023 lúc 17:46

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)

 

Bình luận (0)
ND
Xem chi tiết
NT
23 tháng 12 2023 lúc 9:20

Bài 1:

a: \(\sqrt{50}+2\sqrt{8}-\dfrac{3}{2}\cdot\sqrt{72}+\sqrt{125}\)

\(=5\sqrt{2}+2\cdot2\sqrt{2}-\dfrac{3}{2}\cdot6\sqrt{2}+\sqrt{125}\)

\(=9\sqrt{2}-9\sqrt{2}+5\sqrt{5}=5\sqrt{5}\)

b: \(\left(3\sqrt{2}-\sqrt{5}\right)^2-\dfrac{9}{\sqrt{5}-\sqrt{2}}\)

\(=18-2\cdot3\sqrt{2}\cdot\sqrt{5}+5-\dfrac{9\left(\sqrt{5}+\sqrt{2}\right)}{5-2}\)

\(=23-6\sqrt{10}-3\left(\sqrt{5}+\sqrt{2}\right)\)

\(=23-6\sqrt{10}-3\sqrt{5}-3\sqrt{2}\)

c: \(5\sqrt{4a}-3\sqrt{25a}+\sqrt{9a}\)

\(=5\cdot2\sqrt{a}-3\cdot5\sqrt{a}+3\sqrt{a}\)

\(=10\sqrt{a}-15\sqrt{a}+3\sqrt{a}=-2\sqrt{a}\)

Bình luận (0)