\(a,=3\sqrt{5}-2\sqrt{5}-\sqrt{5}+5\sqrt{5}=5\sqrt{5}\\ b,=9\sqrt{a}-6\sqrt{a}-\sqrt{a}=2\sqrt{a}\\ c,Sửa:3\sqrt[3]{27}-3\sqrt[3]{-8}-3\sqrt[3]{-125}\\ =3\cdot3-3\left(-2\right)-3\left(-5\right)\\ =9+6+15=30\)
\(a,=3\sqrt{5}-2\sqrt{5}-\sqrt{5}+5\sqrt{5}=5\sqrt{5}\\ b,=9\sqrt{a}-6\sqrt{a}-\sqrt{a}=2\sqrt{a}\\ c,Sửa:3\sqrt[3]{27}-3\sqrt[3]{-8}-3\sqrt[3]{-125}\\ =3\cdot3-3\left(-2\right)-3\left(-5\right)\\ =9+6+15=30\)
Rút gọn biểu thức sau:
a)M=\(3x-\sqrt[3]{27^3+27x^2+9x+1}\)
b)N=\(\sqrt[3]{8x^3+12x^2+6x+1}-\sqrt[3]{x^3}\)
Rút gọn : A = \(\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)
rút gọn biểu thức A= ∛2 + √7+2√10 + ∛3∛4 - 3∛2 -1
Giải phương trình 3√x+1+3√x+2=√x^2+3x+2 Cái này 3√ là căn bậc ba nhe mn
Rút gọn :
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
b) B = \(\sqrt[3]{7+5\sqrt{2}}\)
Cho ax^3=by^3=cz^3 và 1/x+1/y+1/z=1.
Chứng minh rằng:
Căn bậc 3 của ax^2+by^2+cz^2= căn bậc 3 của a+ căn bậc ba của b+căn bậc ba của c
Tính
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
b) \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
Rút gọn biểu thức A = \(\sqrt[3]{3}\sqrt{3}\)
A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A