Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

LT

bài 1 Rút gọn biểu thức:

a) 5\(\sqrt{25a^2}-25\) với a<0

b)\(\sqrt{49a^2}+3a\) với a<0

c)3\(\sqrt{9a^6}-6a^3\) với a bất kì

AT
19 tháng 7 2021 lúc 17:04

a) \(5\sqrt{25a^2}-25=25\left|a\right|-25==-25a-25\left(a< 0\right)\)

b) \(\sqrt{49a^2}+3a=7\left|a\right|+3a=-7a+3a\left(a< 0\right)=-4a\)

c) \(3\sqrt{9a^6}=9\left|a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)

Bình luận (0)
NT
19 tháng 7 2021 lúc 17:09

a) 5\(\sqrt{25a^2}\) - 25 với a < 0

= 5\(\sqrt{\left(5a\right)^2}\) - 25

= 5.\(\left|5a\right|\) - 25

= 5.-(5a) - 25 

= -25a - 25 Vì a < 0

b) \(\sqrt{49a^2}\) + 3a với a < 0

\(\sqrt{\left(7a\right)^2}\) + 3a

\(\left|7a\right|\) + 3a

= -7a + 3a Vì a < 0

= -4a

c) 3\(\sqrt{9a^6}\) - 6a3 với a bất kì

= 3\(\sqrt{\left(3a^3\right)^2}\) - 6a3

= 3\(\left|3a^3\right|\) - 6a3

= 9a3 - 6a3

= 3a3

 Chúc bạn học tốt

Bình luận (1)
NT
19 tháng 7 2021 lúc 18:42

a) \(5\sqrt{25a^2}-25=-25a-25\)

b) \(\sqrt{49a^2}+3a=-7a+3a=-4a\)

c) \(3\sqrt{9a^6}-6a^3=6a^3-6a^3=0\)

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
LD
Xem chi tiết
SK
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết