Những câu hỏi liên quan
NT
Xem chi tiết
H24
14 tháng 6 2020 lúc 23:13

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

Bình luận (0)
VC
Xem chi tiết
NL
15 tháng 9 2020 lúc 0:25

a/

\(\Leftrightarrow2sin4x.cos3x=2sin7x.cos3x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\sin7x=sin4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\frac{\pi}{2}+k\pi\\7x=4x+k2\pi\\7x=\pi-4x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k\pi}{3}\\x=\frac{k2\pi}{3}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)

b.

\(\Leftrightarrow2cos4x.cosx=2cos8x.cosx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=4x+k2\pi\\8x=-4x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{6}\end{matrix}\right.\) \(\Leftrightarrow x=\frac{k\pi}{6}\)

Bình luận (0)
DN
Xem chi tiết
VD
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
NA
15 tháng 6 2016 lúc 10:53

A=\(\frac{\left(cos7x+cos10x\right)-\left(cos8x+cos9x\right)}{\left(sin7x+sin10x\right)-\left(sin8x+sin9x\right)}\) =\(\frac{2cos\frac{17x}{2}.cos\frac{3x}{2}-2cos\frac{17x}{2}.cos\frac{x}{2}}{2sin\frac{17x}{2}.cos\frac{3x}{2}-2sin\frac{17x}{2}.cos\frac{x}{2}}\)

=\(\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}\)=\(\frac{cos\frac{17x}{2}}{sin\frac{17x}{2}}\)=cotg\(\frac{17x}{2}\)

 

Bình luận (0)
H24
Xem chi tiết
TV
19 tháng 5 2019 lúc 11:48

\(A=\frac{cos7x-cos8x-cos9x+cos10x}{sin7x-sin8x-sin9x+sin10x}=\frac{(cos10x+cos7x)-\left(cos9x+cos8x\right)}{\left(sin10x+sin7x\right)-\left(sin9x+sin8x\right)}.\) 

     \(=\frac{2cos\frac{17x}{2}cos\frac{3x}{2}-2cos\frac{17x}{2}cos\frac{x}{2}}{2sin\frac{17x}{2}cos\frac{3x}{2}-2sin\frac{17x}{2}cos\frac{x}{2}}=\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}=cotan\frac{17x}{2}.\)  

Bình luận (0)
H24
18 tháng 2 2023 lúc 22:57

`cos 3x+cos 7x=sin 3x-sin 7x`

`<=>sin 3x-cos 3x=sin 7x+cos 7x`

`<=>sin(3x-\pi/4)=sin(7x+\pi/4)`

`<=>[(7x+\pi/4=3x-\pi/4+k2\pi),(7x+\pi/4=[3\pi]/4-3x+k2\pi):}`

`<=>[(x=-\pi/8+[k\pi]/2),(x=\pi/20+[k\pi]/5):}`

Bình luận (1)
NA
Xem chi tiết