Rút gọn biểu thức: Cos7x - 2cos5x + cos3x/ sin6x - sin4x
Rút gọn các biểu thức :
A= \(\sqrt{3}\) sin ( x - \(\dfrac{\pi}{3}\) ) + sin ( x + \(\dfrac{\pi}{6}\) )
B= cos7x cos5x - \(\sqrt{3}\) sin2x + sin7x sin5x
C= 2sin( 2x -\(\dfrac{\pi}{6}\)) + 4sin + 1
D= \(\sqrt{3}\) cos2x + sin2x + 2sin(2x - \(\dfrac{\pi}{6}\))
E= sin2x + 2\(\sqrt{2}\) cosx + 2sin(x + \(\dfrac{\pi}{4}\)) +3
Câu 1: Chứng minh
\(\cos5x.\cos3x+\sin7x.\sin x=\cos2x.\cos4x\)
\(\frac{1-2\sin^22x}{1-\sin4x}=\frac{1+\tan2x}{1-\tan2x}\)
Câu 2:Rút gọn biểu thức
\(2\cos x-3\cos\left(\pi-x\right)+5\sin\left(\frac{7\pi}{x}-x\right)+cot\left(\frac{3\pi}{2}-x\right)\)
Rút gọn biểu thức A = sinx + sin2x + sin3x/cosx + cos2x + cos3x
Cho biểu thức \(B=cos^2x+cos^2\left(x+y\right)-2cosx.cosy.cos\left(x+y\right)\). Rút gọn B ta được kết quả \(B=a+bcos2y\). Tính giá trị \(H=2a+3b\)
Rút gọn biểu thức A = \(\frac{sinx+sin2x+sin3x}{cosx+cos2x+cos3x}\)
Rút gọn biểu thức
\(A=\frac{sin2a+sin5a-sin3a}{1+cosa-2sin^22a}\)
a/ cho sin a = \(\frac{-3}{5}\) và \(\frac{-\pi}{2}< a< 0\) . Tính cos a , tan a
b/ Rút gọn biểu thức : A = \(\frac{tana+cota}{1+tan^2a}\)
rút gọn các biểu thức sau
A=\(\frac{tan\alpha+tanb}{tan\left(a+b\right)}-\frac{tan\alpha-tanb}{tan\left(a-b\right)}\)
B=\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3+sin3x}{sinx}\)