Cho ( Cm) x2 +y2 -2(3m+1)x -8my +16m=0. Chứng minh họ (Cm) luôn tiếp xúc nhau tại điểm cố định.
Cho đồ thị hàm số y = x- 3mx+3m– 2(Cm). Chứng minh rằng tiếp tuyến của Cm tại giao của (Cm) với Oy luôn đi qua một điểm cố định.
Chứng minh họ đường cong (Cm) \(y=x^3-3\left(m-2\right)x^2+3\left(m^2-4m+3\right)x-m^3+6m^2-9m+2\)luôn tiếp xúc với 2 đường thẳng cố định
Phương trình \(\left(C_m\right)\) viết lại:
\(y=\left(x-m+2\right)^3-3\left(x-m+2\right)\)
Họ đồ thị hàm \(\left(C_m\right)\) đơn giản là đồ thị hàm \(y=x^3-3x\) tịnh tiến song song với trục Ox, do đó họ đồ thị này luôn tiếp xúc với các tiếp tuyến tại cực trị của \(y=x^3-3x\) (là hai đường thẳng \(y=\pm2\))
Vậy họ đường cong \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng cố định \(y=\pm2\)
Chứng minh rằng họ đường cong \(\left(C_m\right):y=\frac{\left(3m+1\right)x-m^2+m}{x+m}\) luôn tiếp xúc với hai đường thẳng cố định.
Giả sử \(\left(C_m\right)\) luôn tiếp xúc với đường thẳng \(y=ax+b\), khi đó phương trình sau có nghiệm với mọi m :
\(\begin{cases}\frac{\left(3m+1\right)x+m-m^2}{x+m}=ax+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\begin{cases}3m+1-\frac{4m^2}{x+m}=a\left(x+m\right)am+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)
\(\Leftrightarrow\begin{cases}\frac{8m^2}{x+m}=am+3m+1-b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\frac{\left(am+3m+1-b\right)^2}{16m^2}=a\) với mọi m
\(\Leftrightarrow\left(a^2-10a+9\right)m^2+2\left(a+3\right)\left(1-b\right)m+\left(1-b\right)^2=0\) với mọi m
\(\Leftrightarrow\begin{cases}a^2-10a+9=0\\\left(a+3\right)\left(1-b\right)=0\\\left(1-b\right)^2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}a=1;a=9\\b=1\end{cases}\)
Vậy \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng \(y=x+1;y=9x+1\)
Cho đường thẳng d và hai điểm A, B cố định trên d. Một đường tròn (M) luôn tiếp xúc với d tại điểm I cố định sao cho những tiếp tuyến với ( M ) vẽ từ A và B song song với nhau. Chứng minh rằng điểm M di động trên đường tròn cố định
Gọi AC,BD lần lượt là tiếp tuyến kẻ từ A,B tới đường tròn (M). Theo giả thiết thì AC // BD.
Ta có AC vuông góc MC, AC // BD => MC vuông góc BD. Mà MD vuông góc BD nên C,M,D thẳng hàng
Suy ra CD là đường kính của (M) => ^CID chắn nửa đường tròn (M) => ^CID = 900
Hay IC vuông góc ID (1). Ta lại có AI,AC là tiếp tuyến từ A tới (M) => AM là trung trực của IC
=> AM vuông góc IC (2). Tương tự BM vuông góc ID (3)
Từ (1),(2),(3) suy ra MA vuông góc MB => ^AMB = 900 => M nằm trên đường tròn đường kính AB
Do A,B cố định nên đường tròn (AB) cố định. Vậy M luôn di động trên (AB) cố định (đpcm).
Lưu ý: Điểm I cố định hay di chuyển cũng không ảnh hưởng tới kết quả của bài toán.
Cho họ đường tròn (\(C_m\)) : \(x^2+y^2-2mx+4my+5m^2-1=0\)
a) Chứng minh rằng họ \(\left(C_m\right)\) luôn luôn tiếp xúc với hai đường thẳng cố định
b) Tìm m để \(\left(C_m\right)\) cắt đường tròn \(\left(C\right):x^2+y^2=1\) tại hai điểm phân biệt A, B
a, \(\left(Cm\right)\) có tâm I(m;-2m)luôn thuộc đường thẳng (d) 2x+y=0 và có bán kính R=1
Vậy \(\left(Cm\right)\) luôn tiếp xúc với đường thẳng cố định, đó là tiếp tuyến của\(\left(Cm\right)\) song song với (d)
b,\(0< |m|< \dfrac{2}{\sqrt{5}}\)
Trong không gian Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 - 4 x + 6 y - 3 = 0 và điểm A(2;1;-2). Đường thẳng d đi qua A, tiếp xúc với (S) tại M luôn nằm trên mặt nón (N) cố định. Tọa độ tâm đường tròn đáy của (N) là H(a;b;c). Giá trị 3a-2b+c bằng
A. 8.
B. 4
C. 2.
D. 6 5
Tìm điểm A cố định mà họ đồ thị hàm số y = x 2 + (2 − m)x + 3m( P m ) luôn đi qua.
A. A (3; 15)
B. A (0; −2)
C. A (3; −15)
D. A (−3; −15)
chứng minh rằng
a) Họ đường thẳng k(x+3)-7-y=0 luôn đi qua điểm cố định với mọi k
b) Họ đường thẳng (m+2)x+(m-3)y-m+8=0 luôn đi qua điểm cố định với mọi m
c) Họ đường thẳng y=(2-k)x+k-5 luôn đi qua điểm cố định với mọi k
a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)
Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\)
Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)
Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên :
\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)
Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)
Vậy điểm cố định N(-1;2)
Câu còn lại bạn làm tương tự nhé ^^
c/ Đơn giản thôi mà =)
Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên :
\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)
Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)
Vậy điểm cố định là M(1;-3)
Cho (O) đường kính AB . Gọi C là 1 điểm cố định trên đường tròn và M là điểm di động trên đường tròn ( M,O,C không thẳng hàng ) . Hai đường thẳng CM và AB cắt nhau tại D .
Chứng minh rằng đường tròn ngoại tiếp tam giác OMD luôn đi qua hai điểm cố định .
Gọi (OMD) cắt (O) tại S khác D. Ta có OD = OS, suy ra (OD và (OS của đường tròn (OMD) bằng nhau
Hay ^OMD = ^OMS. Lại có ^MCO = 1800 - ^OCD = 1800 - ^ODC = ^MSO. Do đó ^MOC = ^MOS
Suy ra \(\Delta\)MCO = \(\Delta\)MSO (g.c.g). Vậy S đối xứng với C qua AB, mà C và AB đều cố định nên S cố định
Khi đó (OMD) luôn đi qua 2 điểm cố định là S và O (đpcm).
gọi K là điểm đối xứng với C qua AB; C cố định nên K cũng cố định
ta sẽ chứng minh K thuộc đường tròn ngoại tiếp tam giác OMD hay tứ giác OMDK là tứ giác nội tiếp đường tròn
K đối xứng với C qua AB => gócKOD= gócDOC = 2 gócCBA = gócCBK
mà tứ giác BCMN nội tiếp nên gócCBK= góc CMK=gócDMK
vậy góc KOD= gócDMK => tứ giác DOMK nội tiếp đường tròn hay đường tròn ngoại tiếp tam giác OMD luôn đi qua O và K là 2 điểm cố định