Bài 5b: Tiếp tuyến của đồ thị hàm số

PB

Chứng  minh rằng họ đường cong \(\left(C_m\right):y=\frac{\left(3m+1\right)x-m^2+m}{x+m}\) luôn tiếp xúc với hai đường thẳng cố định.

NB
29 tháng 4 2016 lúc 9:34

Giả sử \(\left(C_m\right)\) luôn tiếp xúc với đường thẳng \(y=ax+b\), khi đó phương trình sau có nghiệm với mọi m :

    \(\begin{cases}\frac{\left(3m+1\right)x+m-m^2}{x+m}=ax+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)   \(\Leftrightarrow\begin{cases}3m+1-\frac{4m^2}{x+m}=a\left(x+m\right)am+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)

\(\Leftrightarrow\begin{cases}\frac{8m^2}{x+m}=am+3m+1-b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\frac{\left(am+3m+1-b\right)^2}{16m^2}=a\) với mọi m

\(\Leftrightarrow\left(a^2-10a+9\right)m^2+2\left(a+3\right)\left(1-b\right)m+\left(1-b\right)^2=0\) với mọi m

\(\Leftrightarrow\begin{cases}a^2-10a+9=0\\\left(a+3\right)\left(1-b\right)=0\\\left(1-b\right)^2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}a=1;a=9\\b=1\end{cases}\)

Vậy \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng \(y=x+1;y=9x+1\)

 

Bình luận (0)

Các câu hỏi tương tự
LB
Xem chi tiết
TM
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
PT
Xem chi tiết
TV
Xem chi tiết
NN
Xem chi tiết