Giải hpt \(\left\{{}\begin{matrix}3x^3-y^3=\frac{1}{x+y}\\x^2+y^2=1\end{matrix}\right.\)
Giải hpt sau:
a) \(\left\{{}\begin{matrix}\sqrt{5}x+\left(1-\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+\sqrt{5}y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\frac{3x}{x+1}-\frac{2y}{y+4}=4\\\frac{2x}{x+1}-\frac{5y}{y+4}=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\frac{2}{2x-y}+\frac{3}{x-2y}=\frac{1}{2}\\\frac{2}{2x-y}-\frac{1}{x-2y}=\frac{1}{18}\end{matrix}\right.\)
1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
giải hpt \(\left\{{}\begin{matrix}3x-2\left|y\right|=1\\x+3\left|y\right|=4\end{matrix}\right.\)
=>3x-2|y|=1 và 3x+9|y|=12
=>-11|y|=-11 và x+3|y|=4
=>x=1 và |y|=1
=>x=1 và \(y\in\left\{1;-1\right\}\)
Giải các hpt:
1)\(\left\{{}\begin{matrix}\frac{10}{x-1}+\frac{1}{y+2}=1\\\frac{25}{x-1}+\frac{3}{y+2}=2\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}4\left|x+y\right|-3\left|x-y\right|=8\\3\left|x+y\right|-5\left|x-y\right|=6\end{matrix}\right.\)
Giải PT và HPT:
1)\(\left\{{}\begin{matrix}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{matrix}\right.\)
2)\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
3)\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\9xy\left(3x-y\right)+6=26x^3-2y^3\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
10. giải hpt bằng phương pháp thế:
6) \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}2x+3y=2\\4x-y-1=0\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-2y=3\\2x-\dfrac{4}{3}y=1\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}5x+y=3\\2x+0,4y=1,2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y
(Các câu khác tương tự nhé.)
1. Giải hpt: \(\left\{{}\begin{matrix}x+y+z=0\\2x+3y+z=0\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^2=26\end{matrix}\right.\)
2. Cho x,y,z là nghiệm của hpt : \(\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{matrix}\right.\) . Tính \(A=x+y+z\)
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
Giải hpt : a) \(\left\{{}\begin{matrix}xy^2+2x+y=4xy\\\frac{1}{xy}+\frac{1}{y^2}+\frac{y}{x}=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+y^2+\frac{4y}{x}=22\\\frac{3}{x^2+y^2-1}+\frac{2x}{y}=1\end{matrix}\right.\)
ĐKXĐ: \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2-4y+2\right)=-y\\\frac{1}{x}\left(y+\frac{1}{y}\right)=3-\frac{1}{y^2}\end{matrix}\right.\)
Do các vế của 2 pt đều khác 0, nhân vế với vế:
\(\left(y+\frac{1}{y}\right)\left(y^2-4y+2\right)=-y\left(3-\frac{1}{y^2}\right)\)
\(\Leftrightarrow y^3-4y^2+6y-4+\frac{1}{y}=0\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1=0\)
Chia 2 vế của pt cho \(y^2\) :
\(y^2+\frac{1}{y^2}-4\left(y+\frac{1}{y}\right)+6=0\)
Đặt \(y+\frac{1}{y}=t\Rightarrow y^2+\frac{1}{y^2}=t^2-2\)
\(\Rightarrow t^2-4t+4=0\Rightarrow t=2\Rightarrow y+\frac{1}{y}=2\Rightarrow y=1\)
b/ ĐKXĐ:
Đặt \(\left\{{}\begin{matrix}x^2+y^2-1=a\\\frac{y}{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+4b=21\\\frac{3}{a}+\frac{2}{b}=1\end{matrix}\right.\)
Một hệ pt hết sức bình thường, chắc bạn giải ngon lành :D
Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Trên con đường thành công không có dấu chân của kẻ lười biếng, Nguyễn Lê Phước Thịnh, Phạm Minh Quang, Phạm Lan Hương, Mysterious Person, Trần Thanh Phương, hellokoko,
@tth_new, @Nguyễn Việt Lâm, @Akai Haruma
Giúp em với ạ! Cần gấp lắm ạ! Thanks!
Giải HPT:
a, \(\left\{{}\begin{matrix}x-y=-1\\\frac{2}{x}+\frac{3}{y}=2\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x-\frac{2}{y}=1\\5x+\frac{4}{y}=9\end{matrix}\right.\)
a)pt đầu\(\Leftrightarrow y=x+1\)
Thay vào pt sau:
\(\frac{2}{x}+\frac{2}{x+1}=2\)Đk:\(x,y\ne0,x\ne-1\)
\(\Rightarrow x+1+x=x^2+x\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=\frac{3+\sqrt{5}}{2}\\y=\frac{3-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy.....
b)pt đầu\(\Leftrightarrow x=\frac{2}{y}+1\)
Thay vào pt sau:
\(\frac{14}{y}=4\Leftrightarrow y=\frac{7}{2}\)\(\Rightarrow x=\frac{11}{7}\)
Vậy .....
mình hơi làm biếng nên ko làm rõ ràng, chắc sẽ có 1 số bạn khác giải jup. Mình gọi trên dưới lần lượt là (1), (2)
a)Chỉ cần dùng pp thế Ở pt (1) : x=-1+y r thế vào pt (2) rồi giải
b) Quá đơn giản bạn chỉ cần nhân pt (1) cho 2 rùi khử hệ y giải
bài này mình ko làm nhưng mong bạn hỉu ý mình nói
Hướng dẫn mk làm cx đc nha!
tran nguyen bao quan, Luân Đào, Nguyễn Thị Diễm Quỳnh, Khôi Bùi , Y, ?Amanda?, Thảo Nguyễn Phạm Phương, Phạm Hoàng Hải Anh, nà ní, Lê Anh Duy, Trần Trung Nguyên, Nguyễn Thành Trương, Ribi Nkok Ngok, Nguyễn Thị Ngọc Thơ, Unruly Kid, Nguyen, Nguyễn Việt Lâm, DƯƠNG PHAN KHÁNH DƯƠNG, ...