Violympic toán 9

BL

Giải hpt : a) \(\left\{{}\begin{matrix}xy^2+2x+y=4xy\\\frac{1}{xy}+\frac{1}{y^2}+\frac{y}{x}=3\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x^2+y^2+\frac{4y}{x}=22\\\frac{3}{x^2+y^2-1}+\frac{2x}{y}=1\end{matrix}\right.\)

NL
13 tháng 2 2020 lúc 11:27

ĐKXĐ: \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2-4y+2\right)=-y\\\frac{1}{x}\left(y+\frac{1}{y}\right)=3-\frac{1}{y^2}\end{matrix}\right.\)

Do các vế của 2 pt đều khác 0, nhân vế với vế:

\(\left(y+\frac{1}{y}\right)\left(y^2-4y+2\right)=-y\left(3-\frac{1}{y^2}\right)\)

\(\Leftrightarrow y^3-4y^2+6y-4+\frac{1}{y}=0\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1=0\)

Chia 2 vế của pt cho \(y^2\) :

\(y^2+\frac{1}{y^2}-4\left(y+\frac{1}{y}\right)+6=0\)

Đặt \(y+\frac{1}{y}=t\Rightarrow y^2+\frac{1}{y^2}=t^2-2\)

\(\Rightarrow t^2-4t+4=0\Rightarrow t=2\Rightarrow y+\frac{1}{y}=2\Rightarrow y=1\)

b/ ĐKXĐ:

Đặt \(\left\{{}\begin{matrix}x^2+y^2-1=a\\\frac{y}{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+4b=21\\\frac{3}{a}+\frac{2}{b}=1\end{matrix}\right.\)

Một hệ pt hết sức bình thường, chắc bạn giải ngon lành :D

Bình luận (0)
 Khách vãng lai đã xóa
BL
13 tháng 2 2020 lúc 11:00

Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Trên con đường thành công không có dấu chân của kẻ lười biếng, Nguyễn Lê Phước Thịnh, Phạm Minh Quang, Phạm Lan Hương, Mysterious Person, Trần Thanh Phương, hellokoko,

@tth_new, @Nguyễn Việt Lâm, @Akai Haruma

Giúp em với ạ! Cần gấp lắm ạ! Thanks!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PQ
Xem chi tiết
PT
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
BL
Xem chi tiết
LH
Xem chi tiết
KA
Xem chi tiết
TT
Xem chi tiết
LN
Xem chi tiết