Những câu hỏi liên quan
TN
Xem chi tiết
LM
Xem chi tiết
29
Xem chi tiết
NT
13 tháng 1 2023 lúc 14:07

a: vecto BM=vecto BA+vecto AM

=-vecto AB+1/2vecto AD

vecto AN=vecto AD+vecto DN

=vecto AD+1/2*vecto AB

b: vecto BM*vecto AN=vecto 0

=>BM vuông góc với AN

Bình luận (0)
MH
Xem chi tiết
DA
Xem chi tiết
NS
Xem chi tiết
NL
1 tháng 11 2021 lúc 20:11

\(\widehat{ABC}=120^0\Rightarrow\widehat{DAB}=180^0-120^0=60^0\)

\(\Rightarrow\Delta ABD\) đều

Gọi E là trung điểm AD \(\Rightarrow\overrightarrow{BE}=\dfrac{1}{2}\overrightarrow{BD}+\dfrac{1}{2}\overrightarrow{BA}\)

\(\Rightarrow\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BE}=\dfrac{1}{3}\overrightarrow{BD}+\dfrac{1}{3}\overrightarrow{BA}\)

\(\Rightarrow\overrightarrow{BG}+\overrightarrow{AD}=\dfrac{1}{3}\overrightarrow{BD}+\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{AD}=\dfrac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)+\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{AD}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{4}{3}\overrightarrow{AD}=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{4}{3}\overrightarrow{AD}\)

Đặt \(\overrightarrow{u}=\overrightarrow{BG}+\overrightarrow{AD}\Rightarrow\left|\overrightarrow{u}\right|^2=\left(-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{4}{3}\overrightarrow{AD}\right)=\dfrac{4}{9}AB^2+\dfrac{16}{9}AD^2-\dfrac{16}{9}\overrightarrow{AB}.\overrightarrow{AD}\)

\(=\dfrac{4}{9}.4a^2+\dfrac{16}{9}4a^2-\dfrac{16}{9}.2a.2a.cos60^0=\dfrac{16}{3}a^2\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\dfrac{4a\sqrt{3}}{3}\)

Bình luận (0)
NL
1 tháng 11 2021 lúc 20:11

undefined

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 12 2022 lúc 20:38

\(\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}\left(\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{AD}\right)\)

\(=\overrightarrow{AB}.\overrightarrow{CB}+\overrightarrow{AB}.\overrightarrow{BA}+\overrightarrow{AB}.\overrightarrow{AD}\)

\(=0-\overrightarrow{AB}^2+0=-4a^2\)

Bình luận (0)
YY
Xem chi tiết
MH
17 tháng 12 2023 lúc 23:09

Câu 4:

Áp dụng định lý Pytago

\(BC^2=AB^2+AC^2\Rightarrow BC=2\)

Ta có:

\(\overrightarrow{CA}.\overrightarrow{BC}=-\overrightarrow{CA}.\overrightarrow{CB}=-\dfrac{CA^2+CB^2-AB^2}{2}=-\dfrac{2+4-2}{2}=-2\)

Câu 5:

Gọi M là trung điểm BC

\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Mà: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Câu 6:

\(\left|\overrightarrow{a}-\overrightarrow{b}\right|=3\)

\(a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=9\)

\(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1^2+2^2-9}{2}=-2\)

Câu 7: 

\(\left|\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{CD}\right|=\left|\overrightarrow{DB}+\overrightarrow{CD}\right|\)

                              \(=\left|\overrightarrow{DB}-\overrightarrow{DC}\right|=\left|\overrightarrow{CB}\right|=BC=a\)

Bình luận (0)