giải hpt \(\left\{{}\begin{matrix}x+y-\sqrt{xy}=1\\\sqrt{x^2+3}+\sqrt{y^2+3}=4\end{matrix}\right.\)
giải hpt: a,\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y=5+\sqrt{\left(x-1\right)\left(y-1\right)}\\\sqrt{x-1}+\sqrt{y-1}=3\end{matrix}\right.\)
a.
ĐKXĐ: \(x;y\ge-1;xy\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)
b.
ĐKXĐ: \(x;y\ge1\)
Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)
\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)
Thế vào pt đầu:
\(x+y=5+\dfrac{11-x-y}{2}\)
\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)
Thế xuống pt dưới:
\(\sqrt{x-1}+\sqrt{6-x}=3\)
\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)
\(\Leftrightarrow...\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
giải hpt: \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left(y+\sqrt{xy}+x-x^2\right)=4\end{matrix}\right.\)
giải hpt:
1, \(\left\{{}\begin{matrix}x^2y^2+4=2y^2\\\left(xy+2\right)\left(y-x\right)=x^3y^3\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2-4xy\left(\dfrac{2}{x-y}-1\right)=4\left(4+xy\right)\\\sqrt{x-y}+3\sqrt{2y^2-y+1}=2y^2-x+3\end{matrix}\right.\)
Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.
Câu 1: ĐK: $x\geq 1$
Xét PT(1):
\(x^2+xy(2y-1)=2y^3-2y^2-x\)
\(\Leftrightarrow x^2-xy+x+(2xy^2-2y^3+2y^2)=0\)
\(\Leftrightarrow x(x-y+1)+2y^2(x-y+1)=0\)
\(\Leftrightarrow (x-y+1)(x+2y^2)=0\)
\(\Rightarrow \left[\begin{matrix} y=x+1\\ 2y^2=-x\end{matrix}\right.\)
Nếu $y=x+1$, thay vào PT(2):
$\Rightarrow 6\sqrt{x-1}+x+8=4x^2$
$\Leftrightarrow 4(x^2-4)-6(\sqrt{x-1}-1)-(x-2)=0$
\(\Leftrightarrow 4(x-2)(x+2)-6.\frac{x-2}{\sqrt{x-1}+1}-(x-2)=0\)
\(\Leftrightarrow (x-2)\left[4(x+2)-\frac{6}{\sqrt{x-1}+1}-1\right]=0\)
Với mọi $x\geq 1$ dễ thấy:
$4(x+2)\geq 12$
\(\frac{6}{\sqrt{x-1}+1}+1\leq 6+1=7\)
Suy ra biểu thức trong ngoặc vuông lớn hơn $0$
$\Rightarrow x-2=0\Rightarrow x=2$ (thỏa mãn)
$\Rightarrow y=x+1=3$
Nếu $2y^2=-x\Rightarrow -x\geq 0\Rightarrow x\leq 0$ (vô lý do $x\geq 1$)
Vậy $(x,y)=(2,3)$
Câu 2:
Nếu như bạn nói những bài toán này được giải theo kiểu đưa về phân tích thành nhân tử thì đề bài của bạn có lẽ sai vì không pt nào trong câu này đưa được về dạng tích. Mình thấy PT(1) có lẽ cần sửa lại thành:
\(x\sqrt{x^2+y}+y=\sqrt{x^4+x^3}+x\)
ĐKXĐ: $x\geq 1; y\geq 0$
Với $x\geq 1; y\geq 0$. Xét PT(1):
\(\Leftrightarrow (x\sqrt{x^2+1}-\sqrt{x^4+x^3})+(y-x)=0\)
\(\Leftrightarrow \frac{x^2(x^2+y)-(x^4+x^3)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)
\(\Leftrightarrow \frac{x^2(y-x)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)
\(\Leftrightarrow (y-x)\left[\frac{x^2}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+1\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông luôn dương với mọi $x\geq 1; y\geq 0$ nên $y-x=0\Rightarrow y=x$
Thay vào PT(2):
$x+\sqrt{x}+\sqrt{x-1}+\sqrt{x(x-1)}=\frac{9}{2}$
\(\Leftrightarrow 2x+2\sqrt{x}+2\sqrt{x-1}+2\sqrt{x(x-1)}-9=0\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1})^2+2(\sqrt{x}+\sqrt{x-1})-8=0\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1}-2)(\sqrt{x}+\sqrt{x-1}+4)=0\)
Dễ thấy \(\sqrt{x}+\sqrt{x-1}+4>0\) nên $\sqrt{x}+\sqrt{x-1}=2$
$\Rightarrow 2x-1+2\sqrt{x(x-1)}=4$
$\Leftrightarrow 5-2x=2\sqrt{x(x-1)}$
Tiếp tục bình phương kết hợp với điều kiện $x\leq \frac{5}{2}$ ta tìm được $x=\frac{25}{16}$
Vậy $x=y=\frac{25}{16}$
Câu 2:
Nếu như bạn nói những bài toán này được giải theo kiểu đưa về phân tích thành nhân tử thì đề bài của bạn có lẽ sai vì không pt nào trong câu này đưa được về dạng tích. Mình thấy PT(1) có lẽ cần sửa lại thành:
\(x\sqrt{x^2+y}+y=\sqrt{x^4+x^3}+x\)
ĐKXĐ: $x\geq 1; y\geq 0$
Với $x\geq 1; y\geq 0$. Xét PT(1):
\(\Leftrightarrow (x\sqrt{x^2+1}-\sqrt{x^4+x^3})+(y-x)=0\)
\(\Leftrightarrow \frac{x^2(x^2+y)-(x^4+x^3)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)
\(\Leftrightarrow \frac{x^2(y-x)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)
\(\Leftrightarrow (y-x)\left[\frac{x^2}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+1\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông luôn dương với mọi $x\geq 1; y\geq 0$ nên $y-x=0\Rightarrow y=x$
Thay vào PT(2):
$x+\sqrt{x}+\sqrt{x-1}+\sqrt{x(x-1)}=\frac{9}{2}$
\(\Leftrightarrow 2x+2\sqrt{x}+2\sqrt{x-1}+2\sqrt{x(x-1)}-9=0\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1})^2+2(\sqrt{x}+\sqrt{x-1})-8=0\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1}-2)(\sqrt{x}+\sqrt{x-1}+4)=0\)
Dễ thấy \(\sqrt{x}+\sqrt{x-1}+4>0\) nên $\sqrt{x}+\sqrt{x-1}=2$
$\Rightarrow 2x-1+2\sqrt{x(x-1)}=4$
$\Leftrightarrow 5-2x=2\sqrt{x(x-1)}$
Tiếp tục bình phương kết hợp với điều kiện $x\leq \frac{5}{2}$ ta tìm được $x=\frac{25}{16}$
Vậy $x=y=\frac{25}{16}$
1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
b) Ta có hpt <=> \(\left\{{}\begin{matrix}2\sqrt{x}-3y+2=-4z^2\\2\sqrt{3x}+4y-2=6z^2\\-3\sqrt{x}+y-4=-2z^2\end{matrix}\right.\)
cộng 3 vế của 3 pt, ta có \(\left(2\sqrt{3}-1\right)\sqrt{x}=4\Leftrightarrow\sqrt{x}=\dfrac{4}{2\sqrt{3}-1}\Leftrightarrow x=\dfrac{16}{\left(2\sqrt{3}-1\right)^2}\)
đến đây thay căn(x)=...vào và đặt z^2=m, ta sẽ ra 1 hệ mới chỉ có 2 ẩn y và m bậc 1 , lát thế vào sẽ ra bậc 2 thì dễ rồi !
giải hpt:
1,\(\left\{{}\begin{matrix}x^2y^2-2x+y^2=0\\2x^2-4x+3+y^3=0\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\left(x^2-xy\right)\left(xy-y^2\right)=25\\\sqrt{x^2-xy}+\sqrt{xy-y^2}=3\left(x-y\right)\end{matrix}\right.\)
Giải hpt sau:
a)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
a:
ĐKXĐ: y+1>=0
=>y>=-1
\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4\left(x^2-2x\right)+2\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7\left(x^2-2x\right)=-7\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x=-1\\3\cdot\left(-1\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x+1=0\\2\sqrt{y+1}=-3+7=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\sqrt{y+1}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y+1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\left(nhận\right)\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\cdot\sqrt{\left(2x-2\right)^2}+5\cdot\sqrt{\left(y+2\right)^2}=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}20\left|x-1\right|-12\left|y+2\right|=28\\20\left|x-1\right|+25\left|y+2\right|=65\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-37\left|y+2\right|=-37\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left|y+2\right|=1\\4\left|x-1\right|=13-5=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|y+2\right|=1\\\left|x-1\right|=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1\in\left\{2;-2\right\}\\y+2\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{-1;-3\right\}\end{matrix}\right.\)
c: ĐKXĐ: \(\left\{{}\begin{matrix}x< >-1\\y< >-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4\\2-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{2}{y+4}=3-4=-1\\\dfrac{2}{x+1}+\dfrac{5}{y+4}=2-9=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{6}{x+1}+\dfrac{4}{y+4}=-2\\\dfrac{6}{x+1}+\dfrac{15}{y+4}=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-11}{y+4}=19\\\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y+4=-\dfrac{11}{19}\\\dfrac{3}{x+1}+2:\dfrac{-11}{19}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{11}{19}-4=-\dfrac{87}{19}\\\dfrac{3}{x+1}=-1-2:\dfrac{-11}{19}=-1+2\cdot\dfrac{19}{11}=\dfrac{27}{11}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x+1=\dfrac{11}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x=\dfrac{2}{9}\end{matrix}\right.\)(nhận)
d:
ĐKXĐ: x<>1 và y<>-2
\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\dfrac{x-1+2}{x-1}+\dfrac{3y+6-6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}1+\dfrac{2}{x-1}+3-\dfrac{6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{x-1}-\dfrac{6}{y+2}=7-4=3\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{y+2}=-1\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+2=1\\\dfrac{2}{x-1}-5=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1\\\dfrac{2}{x-1}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x-1=\dfrac{2}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=\dfrac{11}{9}\end{matrix}\right.\left(nhận\right)\)